Answer
7665 years
Procedure
Let N₀ be the amount of carbon-14 present in a living organism. According to the radioactive decay law, the number of carbon-14 atoms, N, left in a dead tissue sample after a certain time, t, is given by the exponential equation:
N = N₀e^(-λt)
where λ is the decay constant which is related to half-life (T1/2) by the equation:

Here, ln(2) is the natural logarithm of 2.
The percent of carbon-14 remaining after time t is given by N/N₀.
Using the first equation, we can determine λt.
The half-life of carbon-14 is 5,720 years, thus, we can calculate λ using the second equation, and then find t.

Solving the second equation for t, and using the λ we have just calculated we will have
t= 7665 years
Answer:
Magnesium + iron chloride → iron + magnesium chloride
Explanation:
It is the single replacement reaction.
Single replacement:
It is the reaction in which one elements replace the other element in compound.
AB + C → AC + B
Molecular equation:
Magnesium + iron chloride → iron + magnesium chloride
Chemical equation:
Mg(s) + FeCl₂(aq) → MgCl₂(aq) + Fe(s)
Ionic equation:
Mg(s) + Fe²⁺(aq) + 2Cl⁻(aq) → Mg²⁺(aq) + 2Cl⁻(aq) + Fe(s)
Net ionic equation:
Mg(s) + Fe²⁺(aq) → Fe(s) + Mg²⁺(aq)
Answer:
acidic
Explanation:
because the acid is strong whereas the base is weak.
Answer:
19.9 atoms
Explanation:
Grams --- Moles --- Atoms
You're converting from atoms (molecules) to moles.
You do not have to calculate the mass of "di phosphorus pentoxide."
Since you're already given 1.2x10^25 atoms, you start with that. You need to cancel out the atoms, so you need Avogadro's number as shown in the image.
(This has nothing to do with the problem) But in case if you're wondering, the "di" in phosphorus means there's 2 phosphorus and the "pent" means that there are 5 oxygens. So P2O5. Go to your periodic table, multiply their respective atomic masses. You would multiply phosphorus twice and oxygen 5 times. And add them up to get the overall mass.
I hope this helped!
Answer:
They did not have accurate data and information.