Answer:
B
Explanation:
Recall the law of effusion:

Because 5 mol of oxygen was effused in 10 seconds, the rate is 0.5 mol/s.
Let the rate of oxygen be <em>r</em>₁ and the rate of hydrogen be <em>r</em>₂.
The molecular weight of oxygen gas is 32.00 g/mol and the molecular weight of hydrogen gas is 2.02 g/mol.
Substitute and solve for <em>r</em>₂:

Because there are 5 moles of hydrogen gas:

In conclusion, it will take about 2.5 seconds for the hydrogen gas to effuse.
Check: Because hydrogen gas is lighter than oxygen gas, we expect that hydrogen gas will effuse quicker than oxygen gas.
Answer:
9.39 × 10²² molecules
Explanation:
We can find the moles of gases (n) using the ideal gas equation.
P . V = n . R . T
where,
P is the pressure (standard pressure = 1 atm)
V is the volume
R is the ideal gas constant
T is the absolute temperature (standard temperature = 273.15 K)

There are 6.02 × 10²³ molecules in 1 mol (Avogadro's number). Then,

Answer: The coefficient of nitrogen in the given equation is 2.
Explanation: The reaction for the oxidation of methamphentamine with oxygen gas in the body is given by:

By Stoichiometry,
4 moles of methamphentamine reacts with 55 moles of oxygen gas to produce 40 moles of carbon dioxide gas, 30 moles of water and 2 moles of nitrogen gas.
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of 
Hence, the coefficient of nitrogen in the given equation is 2.
Answer:
South American
Explanation:
When you look at a map of plates, only South American forms a boundary with the African plate out of those specific plates
Answer:
0.6743 M
Explanation:
HC₂H₃O₂ + NaOH → NaC₂H₃O₂ + H₂O
First we <u>calculate how many NaOH moles reacted</u>, using the <em>definition of molarity</em>:
- Molarity = moles / volume
- moles = Molarity * volume
- 0.4293 M * 39.27 mL = 16.86 mmol NaOH
<em>One NaOH moles reacts with one acetic acid mole</em>, so <u>the vinegar sample contains 16.86 mmoles of acetic acid as well</u>.
Finally we <u>calculate the concentration (molarity) of acetic acid</u>:
- 16.86 mmol HC₂H₃O₂ / 25.00 mL = 0.6743 M