The correct answer is the second answer choice: bringing iron in!
Answer:
470 °C
Explanation:
This looks like a case where we can use Charles’ Law:

Data:
V₁ = 20 L; T₁ = 100 °C
V₂ = 40 L; T₂ = ?
Calculations:
(a) Convert the temperature to kelvins
T₁ = (100 + 273.15) K = 373.15 K
(b) Calculate the new temperature

Note: The answer can have only two significant figures because that is all you gave for the volumes.
(c) Convert the temperature to Celsius
T₂ = (750 – 273.15) °C = 470 °C
Answer:
B. adding heat to the system and having the system do work on the surroundings
Explanation:
The internal energy of a system is the energy contained within the system. From first law of thermodynamics we have the equation : dq=du+dw
and we know that energy can neither be created nor destroyed; energy can only be transferred or changed from one form to another therefore du is zero. dq = dw this means that the entire heat supplied is converted into work (on the surroundings)
However, some of the heat supplied is also used to increase the internal energy of the system
Answer:
PubChem CID 6393
Structure
Find Similar Structures
Chemical Safety
Compressed Gas
Laboratory Chemical Safety Summary (LCSS) Datasheet
Molecular Formula CF4
Molecular Weight
88.004 g/mol
Explanation:
Answer is: it takes 116,8 seconds to fall to one-sixteenth of its initial value
<span>
The half-life for the chemical reaction is 29,2 s and is
independent of initial concentration.
c</span>₀
- initial concentration the reactant.
c - concentration of the reactant remaining
at time.
t = 29,2 s.<span>
First calculate the rate constant k:
k = 0,693 ÷ t = 0,693 ÷ 29,2 s</span> = 0,0237 1/s.<span>
ln(c/c</span>₀) = -k·t₁.<span>
ln(1/16 </span>÷ 1) = -0,0237 1/s ·
t₁.
t₁ = 116,8 s.