The mass is 222g. No, it is less than 1kg. There are 1000 grams in a kilogram so it would be 0.222kg. Hope this Helps :D
Conservation of momentum: total momentum before = total momentum after
Momentum = mass x velocity
So before the collision:
4kg x 8m/s = 32
1kg x 0m/s = 0
32+0=32
Therefore after the collision
4kg x 4.8m/s = 19.2
1kg x βm/s = β
19.2 + β = 32
Therefore β = 12.8 m/s
Answer:
v_f =63 m/s
Explanation:
given,
starting force = 0 N
uniform rate increase to 36 N
time of action of Force = 35 s
mass of the body = 10 Kg
Speed of the object = ?
From the given data
if we plot F-t curve we will get a triangular shape
we know,
Impulse = Area between F-t curve
= (1/2) x base x height
= 0.5 x 35 x 36
= 630 N.s
now use Impulse-momentum theorem
Impulse = change in momentum
630 = 10 x (v_f - vi)
630 = 10 x (v_f - 0)
v_f =63 m/s
Speed of the object at 35 sec is equal to v_f =63 m/s
Answer:
2000 J per second or 2kJ per second.
Explanation:
The definition for power (W) is the rate of energy (J) per unit of time (seconds). In this case the power output is 2kW, or 2000W. This means the energy rate of the engine must be 2000 joules per second, or 2kJ per second.
D, because you are pulling on the rope. :)