Answer:
E₁ / E₂ = M / m
Explanation:
Let the electric field be E₁ and E₂ for ions and electrons respectively .
Force on ions = E₁ e where e is charge on ions .
Acceleration on ions a = E₁ e / M . Let initial velocity of both be u . Final velocity v = 0
v² = u² - 2as
0 = u² - 2 x E₁ e d / M
u² = 2 x E₁ e d / M
Similarly for electrons
u² = 2 x E₂ e d / m
Hence
2 x E₁ e d / M = 2 x E₂ e d / m
E₁ / E₂ = M / m
All four values are in 3 sig. fig.
<h3>Explanation</h3>
(a)
.
(b)
Sum of the final charge on the two capacitors should be the same as the sum of the initial charge. Voltage of the two capacitors should be the same. That is:
;
;
.
(c)
.
.
(d)
Initial energy of the system, which is the same as the initial energy in the
capacitor:
.
Change in energy:
.
Answer:
Explanation:(1) a constitution is a supreme law of the land, (2) a constitution is a framework for government; (3) a constitution is a legitimate way to grant and limit powers of government officials. Constitutional law is distinguished from statutory law.
Answer:
6.32m/s
Explanation:
note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²
okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!
when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)
now enough of the talking let solve....
so the ball was dropped .ie from rest to the ground through a distance of 2m,
the formula for calculating the distance if a body moving in a straight line is given by:
S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.
from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)
solving ....
we get t to be 0.632s
to find the speed we substitute t in the equation below:
V=u+at ,but since u=0
V=at =10•0.632=6.32m/s
therefore the speed the body uses to strike the ground is 6.32m/s