1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANEK [815]
3 years ago
11

The function below takes a two parameters: a list called a_list and a value called a_value. Complete the function to first check

to see if the value is already in the list. If the value is already in the list, then do nothing. Otherwise, append the value to the end of the list. Your function doesn't need to return anything.
Engineering
1 answer:
Alik [6]3 years ago
5 0

Explanation:

def checklist(a_list, a_value):// def //used to name a function, the //arguments being passed into the //functions are a_list and a_value

if a_value in list://if statement to

//check if it's in the list or not

print("")//print statement to do

//nothing

else://else statement for if the

//a_value is in a_list

a_list.append(a_value)//this adds

//the value to the list

You might be interested in
Ignoring any losses, estimate how much energy (in units of Btu) is required to raise the temperature of water in a 90-gallon hot
Rudik [331]

Answer:

Q=36444.11 Btu

Explanation:

Given that

Initial temperature = 60° F

Final temperature = 110° F

Specific heat of water = 0.999 Btu/lbm.R

Volume of water = 90 gallon

Mass = Volume x density

1\ gallon = 0.13ft^3

Mass ,m= 90 x 0.13 x 62.36 lbm

m=729.62 lbm

We know that sensible heat given as

Q= m Cp ΔT

Now by putting the values

Q= 729.62 x 0.999 x (110-60) Btu

Q=36444.11 Btu

5 0
2 years ago
The mechanical energy of an object is a combination of its potential energy and its
saveliy_v [14]

The mechanical energy of an object is a combination of its potential energy and its <em><u>kinetic</u></em><em><u> </u></em><em><u>energy</u></em><em><u>.</u></em>

6 0
2 years ago
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated va
Ksju [112]

Explanation:

Note: Refer the diagram below

Obtaining data from property tables

State 1:

\left.\begin{array}{l}P_{1}=1.25 \text { bar } \\\text { Sat - vapour }\end{array}\right\} \begin{array}{l}h_{1}=234.45 \mathrm{kJ} / \mathrm{kg} \\S_{1}=0.9346 \mathrm{kJ} / \mathrm{kgk}\end{array}

State 2:

\left.\begin{array}{l}P_{2}=5 \text { bor } \\S_{2}=S_{1}\end{array}\right\} \quad h_{2}=262.78 \mathrm{kJ} / \mathrm{kg}

State 3:

\left.\begin{array}{l}P_{3}=5 \text { bar } \\\text { Sat }-4 q\end{array}\right\} h_{3}=71-33 \mathrm{kJ} / \mathrm{kg}

State 4:

Throttling process  h_{4}=h_{3}=71.33 \mathrm{kJ} / \mathrm{kg}

(a)

Magnitude of compressor power input

\dot{w}_{c}=\dot{m}\left(h_{2}-h_{1}\right)=\left(8 \cdot 5 \frac{\mathrm{kg}}{\min } \times \frac{1 \mathrm{min}}{\csc }\right)(262.78-234 \cdot 45)\frac{kj}{kg}

w_{c}=4 \cdot 013 \mathrm{kw}

(b)

Refrigerator capacity

Q_{i n}=\dot{m}\left(h_{1}-h_{4}\right)=\left(\frac{g \cdot s}{60} k_{0} / s\right) \times(234 \cdot 45-71 \cdot 33) \frac{k J}{k_{8}}

Q_{i n}=23 \cdot 108 \mathrm{kW}\\1 ton of retregiration =3.51 k \omega

\ Q_{in} =6 \cdot 583 \text { tons }

(c)

Cop:

\beta=\frac{\left(h_{1}-h_{4}\right)}{\left(h_{2}-h_{1}\right)}=\frac{Q_{i n}}{\omega_{c}}=\frac{23 \cdot 108}{4 \cdot 013}

\beta=5 \cdot 758

3 0
2 years ago
A 600 MW power plant has an efficiency of 36 percent with 15
ololo11 [35]

Answer:

401.3 kg/s

Explanation:

The power plant has an efficiency of 36%. This means 64% of the heat form the source (q1) will become waste heat. Of the waste heat, 85% will be taken away by water (qw).

qw = 0.85 * q2

q2 = 0.64 * q1

p = 0.36 * q1

q1 = p /0.36

q2 = 0.64/0.36 * p

qw = 0.85 *0.64/0.36 * p

qw = 0.85 *0.64/0.36 * 600 = 907 MW

In evaporation water becomes vapor absorbing heat without going to the boiling point (similar to how sweating takes heat from the human body)

The latent heat for the vaporization of water is:

SLH = 2.26 MJ/kg

So, to dissipate 907 MW

G = qw * SLH = 907 / 2.26 = 401.3 kg/s

8 0
3 years ago
Read 2 more answers
What does the air change rate represent?
Juli2301 [7.4K]

Answer and Explanation:

  • The removal or addition of air volume to the space is the air change rate
  • The rate of air change is positive when air volume is added to the space and the rate of air change is negative when air volume is removed from the space.
  • The standard built home has a 0.5 to 1 of air change rate.
  • The rate of air change is dependent on the building (how the building form)  

3 0
2 years ago
Other questions:
  • List the thermal conductivities of five
    15·1 answer
  • The function of a circuit breaker is to _____.
    12·1 answer
  • Consider fully developed laminar flow in a circular pipe. If the viscosity of the fluid is reduced by half by heating while the
    5·1 answer
  • What is pessimism technology
    12·1 answer
  • 1. A fixed-geometry supersonic inlet starts at a Mach number of 3. After starting, the cruise Mach number is 2, and the operatin
    13·1 answer
  • 1). Mention any four operations that requires airlines. 2). Explain how airflow is applicable to the above mentioned operations.
    12·1 answer
  • An air conditioning system operating on reversed carnot cycle is required to remove heat from the house at a rate of 32kj/s to m
    5·1 answer
  • Which of these processes uses a die and a press to form parts?
    6·1 answer
  • Engineers designed a motorcycle helmet from a long-lasting and safe material that protects the wearer from accidents and excessi
    7·1 answer
  • Part A Identify the zero-force members in the truss. (Figure 1) (Hint: Use both visual inspection and analysis.) Check all that
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!