Answer:
Q=36444.11 Btu
Explanation:
Given that
Initial temperature = 60° F
Final temperature = 110° F
Specific heat of water = 0.999 Btu/lbm.R
Volume of water = 90 gallon
Mass = Volume x density

Mass ,m= 90 x 0.13 x 62.36 lbm
m=729.62 lbm
We know that sensible heat given as
Q= m Cp ΔT
Now by putting the values
Q= 729.62 x 0.999 x (110-60) Btu
Q=36444.11 Btu
The mechanical energy of an object is a combination of its potential energy and its <em><u>kinetic</u></em><em><u> </u></em><em><u>energy</u></em><em><u>.</u></em>
Explanation:
Note: Refer the diagram below
Obtaining data from property tables
State 1:

State 2:

State 3:

State 4:
Throttling process 
(a)
Magnitude of compressor power input


(b)
Refrigerator capacity



(c)
Cop:


Answer:
401.3 kg/s
Explanation:
The power plant has an efficiency of 36%. This means 64% of the heat form the source (q1) will become waste heat. Of the waste heat, 85% will be taken away by water (qw).
qw = 0.85 * q2
q2 = 0.64 * q1
p = 0.36 * q1
q1 = p /0.36
q2 = 0.64/0.36 * p
qw = 0.85 *0.64/0.36 * p
qw = 0.85 *0.64/0.36 * 600 = 907 MW
In evaporation water becomes vapor absorbing heat without going to the boiling point (similar to how sweating takes heat from the human body)
The latent heat for the vaporization of water is:
SLH = 2.26 MJ/kg
So, to dissipate 907 MW
G = qw * SLH = 907 / 2.26 = 401.3 kg/s