True, oxygen gas ignites a glowing splint
Answer: Sorry I try to download it but it not showing anything, if you take a picture of the work maybe I would do it....
Explanation:
Answer:
The total heat required is 691,026.36 J
Explanation:
Latent heat is the amount of heat that a body receives or gives to produce a phase change. It is calculated as: Q = m. L
Where Q: amount of heat, m: mass and L: latent heat
On the other hand, sensible heat is the amount of heat that a body can receive or give up due to a change in temperature. Its calculation is through the expression:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the change in temperature (Tfinal - Tinitial).
In this case, the total heat required is calculated as:
- Q for liquid water. This is, raise 248 g of liquid water from O to 100 Celsius. So you calculate the sensible heat of water from temperature 0 °C to 100° C
Q= c*m*ΔT

Q=103,763.2 J
- Q for phase change from liquid to steam. For this, you calculate the latent heat with the heat of vaporization being 40 and being 248 g = 13.78 moles (the molar mass of water being 18 g / mol, then
)
Q= m*L

Q=562.0862 kJ= 562,086.2 J (being 1 kJ=1,000 J)
- Q for temperature change from 100.0
∘
C to 154
∘
C, this is, the sensible heat of steam from 100 °C to 154°C.
Q= c*m*ΔT

Q=25,176.96 J
So, total heat= 103,763.2 J + 562,086.2 J + 25,176.96 J= 691,026.36 J
<u><em>The total heat required is 691,026.36 J</em></u>
The theoretical yield of Ca(OH)₂ : 42.032 g
<h3>Further explanation</h3>
Given
31.8 g of CaO
Required
The theoretical yield of Ca(OH)₂
Solution
Reaction
CaO + H₂O⇒Ca(OH)₂
mol CaO (MW=56 g/mol) :
= mass : MW
= 31.8 g : 56 g/mol
= 0.568
From equation, mol Ca(OH)₂ = mol CaO = 0.568
Mass Ca(OH)₂ (MW=74 g/mol) :
= 0.568 x 74
= 42.032 g
Answer:
The heat absorbed by the water is 228,948.48 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
In this way, between heat and temperature there is a direct proportional relationship (Two magnitudes are directly proportional when there is a constant so that when one of the magnitudes increases, the other also decreases; and the same happens when either of the two decreases .). The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- c= 4.184

- m=855 g
- ΔT= Tfinal - Tinitial= 85 °C - 21°C= 64 °C
Replacing:
Q= 4.184
*855 g* 64 C
Solving:
Q= 228,948.48 J
<u><em>The heat absorbed by the water is 228,948.48 J</em></u>