<span>One half-life produces (1/2) of the decaying substance.
There would still be 48 atoms. But 24 would have thrown off
particles from their nucleuses, and only 24 would still be radioactive.</span>
Answer:
solved
Explanation:
a) F_net = (F2 - F3)i - F1 j
b) |Fnet| = sqrt( (F2 - F3)^2 + F1^2)
= sqrt( (9- 5)^2 + 1^2)
= 4.123 N
c) θ = tan^-1( (Fnet_y/Fnet_x)
= tan^-1( -1/(9-5) )
= -14.036°
Answer:
4.763 × 10⁶ N/C
Explanation:
Let E₁ be the electric field due to the 4.0 μC charge and E₂ be the electric field due to the -6.0 μC charge. At the third corner, E₁ points in the negative x direction and E₂ acts at an angle of 60 to the negative x - direction.
Resolving E₂ into horizontal and vertical components, we have
E₂cos60 as horizontal component and E₂sin60 as vertical component. E₁ has only horizontal component.
Summing the horizontal components we have
E₃ = -E₁ + (-E₂cos60) = -kq₁/r²- kq₂cos60/r²
= -k/r²(q₁ + q₂cos60)
= -k/r²(4 μC + (-6.0 μC)(1/2))
= -k/r²(4 μC - 3.0 μC)
= -k/r²(1 μC)
= -9 × 10⁹ Nm²/C²(1.0 × 10⁻⁶)/(0.10 m)²
= -9 × 10⁵ N/C
Summing the vertical components, we have
E₄ = 0 + (-E₂sin60)
= -E₂sin60
= -kq₂sin60/r²
= -k(-6.0 μC)(0.8660)/(0.10 m)²
= -9 × 10⁹ Nm²/C²(-6.0 × 10⁻⁶)(0.8660)/(0.10 m)²
= 46.77 × 10⁵ N/C
The magnitude of the resultant electric field, E is thus
E = √(E₃² + E₄²) = √[(-9 × 10⁵ N/C)² + (46.77 10⁵ N/C)²) = (√226843.29) × 10⁴
= 476.28 × 10⁴ N/C
= 4.7628 × 10⁶ N/C
≅ 4.763 × 10⁶ N/C
Answer: 0.049 mol
Explanation:
1) Data:
n₁ = 0.250 mol
p₁ = 730 mmHg
p₂ = 1.15 atm
n₂ - n₁ = ?
2) Assumptions:
i) ideal gas equation: pV = nRT
ii) V and T constants.
3) Solution:
i) Since the temperature and the volume must be assumed constant, you can simplify the ideal gas equation into:
pV = nRT ⇒ p/n = RT/V ⇒ p/n = constant.
ii) Then p₁ / n₁ = p₂ / n₂
⇒ n₂ = p₂ n₁ / p₁
iii) n₂ = 1.15atm × 760 mmHg/atm × 0.250 mol / 730mmHg = 0.299 mol
iv) n₂ - n₁ = 0.299 mol - 0.250 mol = 0.049 mol
Correct answer choice is:
D. A frequency higher than the original frequency.
Explanation:
This is a true case of Doppler's effect. The Doppler effect can be defined as the effect originated by a traveling source of waves in which there is a visible higher variation in pulse for observers towards what the source is progressing and a visible descending shift in rate for observers from what the source is dropping.