According to the article "Nuclear shapes" by Renee Lucas the nucleus's shape is mainly modified by vibrational and rotational features happening within the cell. According to the article if i read correctly "near closed shells spherical shapes prevail, while between closed shells the large number of valence nucleons in orbit with large particle angular momentum leads to nuclei with large deformations leading them to not only maintain its shape but also alloying it to work.
Answer:
Push and pull both are forces , but the difference is in their direction at which it is applied . If the force applied in the direction of motion of the particle then we call it as push . If that force applied in the direction OPPOSITE to the motion of particle then it is termed as pull
Answer:
I = 18 x 10⁻⁹ A = 18 nA
Explanation:
The current is defined as the flow of charge per unit time. Therefore,
I = q/t
where,
I = Average Current passing through nerve cell
q = Total flow of charges through nerve cell
t = time period of flow of charges
Here, in our case:
I = ?
q = (9 pC)(1 x 10⁻¹² C/1 pC) = 9 x 10⁻¹² C
t = (0.5 ms)(1 x 10⁻³ s/1 ms) = 5 x 10⁻⁴ s
Therefore,
I = (9 x 10⁻¹² C)/(5 x 10⁻⁴ s)
<u>I = 18 x 10⁻⁹ A = 18 nA</u>
Answer:
108.7 V
Explanation:
Two forces are acting on the particle:
- The external force, whose work is 
- The force of the electric field, whose work is equal to the change in electric potential energy of the charge: 
where
q is the charge
is the potential difference
The variation of kinetic energy of the charge is equal to the sum of the work done by the two forces:

and since the charge starts from rest,
, so the formula becomes

In this problem, we have
is the work done by the external force
is the charge
is the final kinetic energy
Solving the formula for
, we find
