I think the half of 1293 its the mass ? maybe idk I just tried
Answer:- 1840 g.
Solution:- We have been given with 3.35 moles of and asked to calculate it's mass.
To convert the moles to grams we multiply the moles by the molar mass of the compound. Molar mass of the compound is the sum of atomic masses of all the atoms present in it.
molar mass of = atomic mass of Hg + 2(atomic mass of I) + 6(atomic mass of O)
= 200.59+2(126.90)+6(16.00)
= 200.59+253.80+96.00
= 550.39 gram per mol
Let's multiply the given moles by the molar mass:

= 1843.8 g
Since, there are three sig figs in the given moles of compound, we need to round the calculated my to three sig figs also. So, on rounding off to three sig figs the mass becomes 1840 g.
Nonmetals form negatively charged ions, or anions. They do this because they need to gain one to three electrons in order to achieve an octet of valence electrons, making them isoelectronic with the noble gas at the end of the period to which they belong.
<h3>
Answer:</h3>
7.4797 g AlF₃
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN] 2AlF₃ + 3K₂O → 6KF + Al₂O₃
[Given] 15.524 g KF
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol AlF₃ = 6 mol KF
Molar Mass of Al - 26.98 g/mol
Molar Mass of F - 19.00 g/mol
Molar Mass of K - 39.10 g/mol
Molar Mass of AlF₃ - 26.98 + 3(19.00) = 83.98 g/mol
Molar Mass of KF - 39.10 + 19.00 = 58.10 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 5 sig figs.</em>
7.47966 g AlF₃ ≈ 7.4797 g AlF₃