1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Diano4ka-milaya [45]
3 years ago
10

By what distance do two objects carrying 1.0 C of charge each have to be separated before the electric force exerted on each obj

ect is 5.5 N
Physics
1 answer:
NNADVOKAT [17]3 years ago
6 0

Answer:

Distance between both the object will be 404.51 m

Explanation:  

We have given charge on two objects q_1=q_2=1C

Coulomb force between the two objects is given F = 5.5 N

We have to fond the distance between both the object so that force between them is 5.5 N

According to coulomb law force between two charge particle is F=\frac{1}{4\pi \epsilon _0}\frac{q_1q_2}{r^2}

So 5.5=\frac{9\times 10^9\times 1\times 1}{r^2}

r^2=16.36\times 10^8

r = 404.51 m

So distance between both object will be 404.51 m

You might be interested in
The amount of energy required to raise the temperature of 1 kilogram of a substance by 1 Kelvin is called its
son4ous [18]
Specific heat.  The definition of specific heat is the amount of energy required to raise the temperature of 1g of a substance by 1K or 1°C.
8 0
3 years ago
Read 2 more answers
Use this free body diagram to help you find the magnitude of the force F1 needed to keep this block in static equilibrium 15.3 N
bija089 [108]

Do you have a picture of the diagram?

5 0
3 years ago
Which wavelength would scientists use to measure the molecular structure of H2O?
Ne4ueva [31]

Answer:

To find out what water is made of, it helps to look at its chemical formula, which is H2O. This basically tells us that the water molecule is composed of two elements: hydrogen and oxygen or, more precisely, two hydrogen atoms (H2) and one oxygen atom (O).

Explanation:

7 0
3 years ago
12. A rocket, initially at rest on the ground, accelerates vertically. It accelerates uniformly until it
vodomira [7]

Answer:

We kindly invite you to read carefully the explanation and check the image attached below.

Explanation:

According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:

v_{f} = v_{o}+a\cdot (t-t_{o}) (1)

Where:

v_{o} - Initial velocity, measured in meters per second.

v_{f} - Final velocity, measured in meters per second.

a - Acceleration, measured in meters per square second.

t_{o} - Initial time, measured in seconds.

t - Final time, measured in seconds.

Now we obtain the kinematic equations for thrust and free fall stages:

Thrust (v_{o} = 0\,\frac{m}{s}, a = 30\,\frac{m}{s^{2}}, t_{o} = 0\,s, 0\,s\le t< 30\,s)

v = 30\cdot t (2)

Free fall (v_{o} = 900\,\frac{m}{s}, a = -9.807\,\frac{m}{s}, t_{o} = 30\,s, 30\,s \le t \le 120\,s)

v = 900-9.81\cdot (t-30) (3)

Now we created the graph speed-time, which can be seen below.

5 0
3 years ago
HELP PLEASE!!! 30+ points!!
GarryVolchara [31]

1) 9.26 cm

Explanation:

The focal length of a plane mirror is virtually infinite. Considering the lens equation,

\frac{1}{f}=\frac{1}{p}+\frac{1}{q}

where f is the focal length, p is the object distance, q the image distance. If we replace f with infinity, we get

q=-p

The magnification equation states that

y' = -\frac{q}{p}y

where y is the size of the object and y' the size of the image. Substituting q=-p, we get

y'=y

this means that the image produced by a plane mirror is always:

- Upright (y' is positive)

- The same size as the object

In this case, we have a book of height 9.26 cm (y=9.26 cm). This means that the magnitude of the size of the image (y') will be 9.26 cm as well.

2) 22.7 cm

As we said before, due to the infinite focal length of a plane mirror,

q=-p

this means that the image produced by a plane mirror is always:

- Virtual (because q is negative)

- At the same distance from the mirror as the object

In this case, we have a book placed at 22.7 cm from the mirror (p=22.7 cm). This means that the magnitude of the distance of the image from the mirror (q) will be 22.7 cm as well.

3) 1.60 m/s

We said previously that the image produced by a plane mirror is always at the same distance from the mirror as the real object. This implies that whenever we move the object toward/away from the mirror, the distance p will alway remain equal to the distance q. But this also means that the object and the distance are moving toward/away from the mirror at the same speed.

Therefore, since in this case the person is moving away from the mirror at 1.60 m/s, the image will also move away at a speed of 1.60 m/s.

4 0
3 years ago
Other questions:
  • Micha ran 2 miles north in 20 minutes. She then turned back and ran 1 mile in 15 minutes. To cool down, she walked the rest of t
    7·1 answer
  • What is the path of an electron moving at 4 000 m/s perpendicular to a magnetic field of 1.5 T? (me = 9.11 x 10^-31kg)
    13·1 answer
  • Radiation transfers energy by moving matter. Please select the best answer from the choices provided
    6·2 answers
  • Rosa records the distance that a toy car rolls and the time it takes to cover the distance. What scientific practice is this?
    14·2 answers
  • Which situation is work not being done? A) A bookcase is slid across carpeting. B) A stack of books is carried at waist level ac
    7·1 answer
  • Why would the discovery of a fossil imply that earth is much older than originally though ?
    9·1 answer
  • Determine explicitly which is faster, 75 miles per hour or 75 m/s? Express all your results in MKS units and explain your conclu
    10·1 answer
  • Sunlight is reflected off of a puddle of water ahead of a driver. The index of refraction of the water is 1.333. If a driver sit
    7·1 answer
  • Help uhh i need to know this answer
    12·1 answer
  • Describe succinctly the relationship between how far a galaxy is from us (its distance), versus how fast it is moving.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!