In other words a infinitesimal segment dV caries the charge
<span>dQ = ρ dV </span>
<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>
<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>
<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
Answer:
F in the definition of potential energy is the force exerted by the force field, e.g., gravity, spring force, etc. The potential energy U is equal to the work you must do against that force to move an object from the U=0 reference point to the position r.
Explanation:
Answer:
B. An electric current into a magnetic field
Explanation:
The generation of electrical power requires relative motion between a magnetic field and a conductor. In a generator, mechanical energy is converted into electrical energy. The electricity produced by most generators is in the form of alternating current.
the answer is the forth one treatment of cancer