P = 43 * 10^3
V = 12 L
P' =?
V' = 8 L
PV = P'V'
43*10^3* 12 = P' * 8
I know you can do it from here, mate ;)
Answer:
0.25 m
Explanation:
We can solve the problem by using the lens equation:

where
f is the focal length
p is the distance of the object from the lens
q is the distance of the image from the lens
In this problem, we have
f = +20 cm=+0.20 m (the focal length is positive for a converging lens)
q = +1.0 m (the image distance is positive for a real image)
Solving the equation for p, we find

To solve this problem we will apply the concepts related to the intensity included as the power transferred per unit area, where the area is the perpendicular plane in the direction of energy propagation.
Since the propagation occurs in an area of spherical figure we will have to


Replacing with the given power of the Bulb of 100W and the radius of 2.5m we have that


The relation between intensity I and 

Here,
= Permeability constant
c = Speed of light
Rearranging for the Maximum Energy and substituting we have then,




Finally the maximum magnetic field is given as the change in the Energy per light speed, that is,



Therefore the maximum value of the magnetic field is 
The answer is D. Small object made of ice and dust that orbits the Sun and forms a coma as it approaches the Sun.
Answer:
8.40 m/s
Explanation:
Slope of the plot is 0.119
Slope of a plot is given by the change in y direction divided by the change in x direction
Here, the y axis represents inverse wavelength and the x axis represents frequency.
f = Frequency (Hz, assumed)
v = Phase velocity (m/s, assumed)
λ = Wavelength (m, assumed)
So, slope

Now,


The speed of sound travelling in the tube is 8.40 m/s