<span>Ans : Initial E = KE = ½mv² = ½ * 1.2kg * (2.2m/s)² = 2.9 J
max spring compression where both velocities are the same: conserve momentum:
1.2kg * 2.2m/s = (1.2 + 3.2)kg * v → v = 0.6 m/s
which means the combined KE = ½ * (1.2 + 3.2)kg * (0.6m/s)² = 0.79 J
The remaining energy went into the spring:
U = (2.9 - 0.79) J = 2.1 J = ½kx² = ½ * 554N/m * x²
x = 0.0076 m ↠(a)</span>
Locate the mode of 12, 3, 5, 17, 3, 18, 5, 11, 11, 15, 3, 9, 3.
zimovet [89]
Answer:
Mode = 3 because it is listed 4 times
According to Newton's Second Law of Motion :
The Force acting on an Object is equal to Product of Mass of the Object and Acceleration produced due to the Force.
Force acting = Mass of the Object × Acceleration
Given : Force = 50 newton and Mass of the Object = 10 kg
Substituting the respective values in the Formula, we get :
50 N = 10 kg × Acceleration

Acceleration of the Object = 5 m/s²
Answer:
44.64 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²


<u>Time taken to reach 1180 m is 11.29 seconds</u>

<u>Time the rocket will keep going up after the engines shut off is 13.06 seconds.</u>

The distance the rocket will keep going up after the engines shut off is 836.05 m
Total distance traveled by the rocket in the upward direction is 1180+836.05 = 2016.05 m
The rocket will fall from this height

<u>Time taken by the rocket to fall from maximum height is 20.29 seconds</u>
Time the rocket will stay in the air is 11.29+13.06+20.29 = 44.64 seconds
Answer:

Explanation:
The angular momentum of an object is given by:

where
m is the mass of the object
v is its velocity
r is the distance of the object from axis of rotation
Here we have:
m = 350 g = 0.35 kg is the mass of the ball
v = 9.0 m/s is the velocity
r = 3.0 m is the distance of the object from axis of rotation (if we take the ground as the centre of rotation)
Therefore, the angular momentum is:
