Answer:
Option A, B and D
Explanation:
Jack can easily convince boss if he focus around two major aspects of the company
a) Revenue enhancement - Jack must outline the benefits of his research that can be used to improvise customer offerings and hence can be further used to devise more energy-efficient options to customer
b) Reduction in mistakes - Issues such as poor implementation can be avoided with better approach and understanding.
Hence, option A, B and D are correct
Answer:
True strain = 3.7704
Explanation:
Strain is the measure an object that is stretched or deformed. This occurs when a force is applied to an object. Strain deals mostly with the change in length of the object. Strain = Δ L /L = Change in Length over the original Length:
Volume Constancy :
ΔL/L0=A0/ΔA=(D0/ ΔD)=(25mm/0.75mm)^2
ΔL/L0=44.4
Engineering strain:
Engineering strain =ΔL-L0/L0=ΔL/L0-1
Engineering strain =44.4-1=43.4
True strain, ε=In(ΔL/L0)=In(43.4)=3.7704
Note that strain has no unit, so the True strain = 3.7704
Answer:
Industrial Engineers study various types of math including calculus, numerical analysis, statistics, linear algebra, numerical methods, operations research, etc. We do not necessarily use these in our day-to-day activities, but they help to build an analytical mindset that many employers value.
Answer:
The theoretical maximum specific gravity at 6.5% binder content is 2.44.
Explanation:
Given the specific gravity at 5.0 % binder content 2.495
Therefore
95 % mix + 5 % binder gives S.G. = 2.495
Where the binder is S.G. = 1, Therefore
Per 100 mass unit we have (Mx + 5)/(Vx + 5) = 2.495
(95 +5)/(Vx +5) = 2.495
2.495 × (Vx + 5) = 100
Vx =35.08 to 95
Or density of mix = Mx/Vx = 95/35.08 = 2.7081
Therefore when we have 6.5 % binder content, we get
Per 100 mass unit
93.5 Mass unit of Mx has a volume of
Mass/Density = 93.5/2.7081 = 34.526 volume units
Therefore we have
At 6.5 % binder content.
(100 mass unit)/(34.526 + 6.5) = 2.44
The theoretical maximum specific gravity at 6.5% binder content = 2.44.