Answer:
1 pulse rotate = 9 degree
Explanation:
given data
incremental encoder rotating = 15 rpm
wheel holes = 40
solution
we get here first 1 revolution time
as 15 revolution take = 60 second
so 1 revolution take =
1 revolution take = 4 seconds
and
40 pulse are there for 1 revolution
40 pulse for 360 degree
so 1 pulse rotate is = 
1 pulse rotate = 9 degree
Answer:
The correct option is d ( Neither A nor B)
Explanation:
Technician A made 2 mistakes in his statement.Firstly the tire is self supporting not self sealing.
Secondly, this tire does not provide permanent sealing of punctured area option a is incorrect.
This self-supporting tire after being affected with complete air leakage can temporarily bear the load of the car and avoid rolling over a distance of 80 km at a maximum speed of 55 mph. Here is what technician B suggested incorrectly as the tire after being.Here the technician B suggested incorrectly as the tire after being affected with puncture can not travel at any speed so option B is wrong
Since option a and b are incorrect and c is invalid.
Answer:
Code is given below:
Explanation:
.data
str1: .space 20
str2: .space 20
msg1:.asciiz "Please enter string (max 20 characters): "
msg2: .asciiz "\n Please enter string (max 20 chars): "
msg3:.asciiz "\nSAME"
msg4:.asciiz "\nNOT SAME"
.text
.globl main
main:
li $v0,4 #loads msg1
la $a0,msg1
syscall
li $v0,8
la $a0,str1
addi $a1,$zero,20
syscall #got string to manipulate
li $v0,4 #loads msg2
la $a0,msg2
syscall
li $v0,8
la $a0,str2
addi $a1,$zero,20
syscall #got string
la $a0,str1 #pass address of str1
la $a1,str2 #pass address of str2
jal methodComp #call methodComp
beq $v0,$zero,ok #check result
li $v0,4
la $a0,msg4
syscall
j exit
ok:
li $v0,4
la $a0,msg3
syscall
exit:
li $v0,10
syscall
methodComp:
add $t0,$zero,$zero
add $t1,$zero,$a0
add $t2,$zero,$a1
loop:
lb $t3($t1) #load a byte from each string
lb $t4($t2)
beqz $t3,checkt2 #str1 end
beqz $t4,missmatch
slt $t5,$t3,$t4 #compare two bytes
bnez $t5,missmatch
addi $t1,$t1,1 #t1 points to the next byte of str1
addi $t2,$t2,1
j loop
missmatch:
addi $v0,$zero,1
j endfunction
checkt2:
bnez $t4,missmatch
add $v0,$zero,$zero
endfunction:
jr $ra
Answer:
The time necessary to purge 95% of the NaOH is 0.38 h
Explanation:
Given:
vfpure water(i) = 3 m³/h
vNaOH = 4 m³
xNaOH = 0.2
vfpure water(f) = 2 m³/h
pwater = 1000 kg/m³
pNaOH = 1220 kg/m³
The mass flow rate of the water is = 3 * 1000 = 3000 kg/h
The mass of NaOH in the solution is = 0.2 * 4 * 1220 = 976 kg
When the 95% of the NaOH is purged, thus the NaOH in outlet is = 0.95 * 976 = 927.2 kg
The volume of NaOH in outlet after time is = 927.2/1220 = 0.76 m³
The time required to purge the 95% of the NaOH is = 0.76/2 = 0.38 h
Answer:
Aqueous solution of ionic compounds conduct electricity while solid ionic compounds don't.
Explanation:
Ionic compound conduct electricity when liquid or in aqueous solution that is resolved in water because the ionic bonds of the compound become weak and the ions are free to move from place to place.
Ionic compounds don't conduct electricity while in solid state because the ionic bonds are to strong and ions cannot move around with lack of space for movement which makes the electric conductivity zero.