<span>An explosion that releases great amounts of heat is an example of an exothermic process. Any reaction that gives off or releases energy as light, electricity, heat, or sound is considered to be exothermic, with "exo" meaning "outside". An explosion is one of the most extreme cases of exothermic reactions.</span>
The answer is balanced forces
Answer:
The atom is divisible particle and can be subdivided into smaller particles proton, neutron and electrons was not stated by John dalton.
Explanation:
The postulate of Dalton's atomic theory that atom is indivisible particle and can not be subdivided into smaller particles was later changed because atom can be divided into neutrons, protons and electrons.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e⁻
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Proton and neutron:
While neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
Symbol of neutron= n⁰
Mass of proton=1.672623×10⁻²⁷ Kg
Mass of neutron=1.674929×10⁻²⁷ Kg
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron.
Answer:
The Barium flame is green because it is a difficult flame to excite, therefore for it to trigger a flame it is necessary that it be too excited for it to occur.
The reddish color of calcium is due to its high volatility and it is sometimes very difficult to differentiate it from strontium.the compression of these elements is due to being able to make them work during combustion
Explanation:
The flame test is a widely used qualitative analysis method to identify the presence of a certain chemical element in a sample. To carry it out you must have a gas burner. Usually a Bunsen burner, since the temperature of the flame is high enough to carry out the experience (a wick burner with an alcohol tank is not useful). The flame temperature of the Bunsen burner must first be adjusted until it is no longer yellowish and has a bluish hue to the body of the flame and a colorless envelope. Then the tip of a clean platinum or nichrome rod (an alloy of nickel and chromium), or failing that of glass, is impregnated with a small amount of the substance to be analyzed and, subsequently, the rod is introduced into the flame, trying to locate the tip in the least colored part of the flame.
The electrons in these will jump to higher levels from the lower levels and immediately (the time that an electron can be in higher levels is of the order of nanoseconds), they will emit energy in all directions in the form of electromagnetic radiation (light) of frequencies characteristics. This is what is called an atomic emission spectrum.
At a macroscopic level, it is observed that the sample, when heated in the flame, will provide a characteristic color to it. For example, if the tip of a rod is impregnated with a drop of Ca2 + solution (the previous notation indicates that it is the calcium ion, that is, the calcium atom that has lost two electrons), the color observed is brick red .
Each period in the periodic table corresponds to a principal energy level