Answer:
The focal length of eye piece is 6.52 cm.
Explanation:
Given that,
Angular Magnification of the microscope M = -46
the distance between the lens in microscope L= 16 cm
The focal length of objective f₀ = 1.5 cm
Normal near point N = 25 cm
Have to find focal length of eye piece f ₙ =?
The angular magnification is given by
M ≈ - (L-fₙ)N/f₀fₙ
Rearranging for fₙ
fₙ =L(1 - Mf₀/N)⁺¹
=18/2.76
fₙ = 6.52 cm
The focal length of eye piece is 6.52 cm.
I'm pretty sure its d. because depends what tipe of dog it is there are some that see different colors so I'm pretty sure its d.
Answer:
3.626 m/s
Explanation:
v=d/t
1. -0.02/0 = 0 m/s
2. 0.86/0.2 = 4.3 m/s
3. 1.71/0.4 = 4.275 m/s
4. 2.54/0.6 = 4.23 m/s
5. 3.32/0.8 = 4.15 m/s
6. 4.08/1.0 = 4.08 m/s
7. 4.79/1.2 = 3.99 m/s
8. 5.48/1.4 = 3.91 m/s
9. 6.15/1.6 = 3.84 m/s
10. 6.76/1.8 = 3.76 m/s
11. 7.37/2.0 = 3.66 m/s
12. 7.92/2.2 = 3.6 m/s
13. 8.45/2.4 = 3.52 m/s
14. 8.96/2.6 = 3.45 m/s
the mean of these numbers is 3.626
his average velocity ks 3.626 m/s
Part (a):
1- Since the resistors are in series, therefore, the total resistance is the summation of the two resistors.
Therefore:
Rtotal = R1 + R2 = 3.11 + 6.15 = 9.26 ohm
2- Since the two resistors are in series, therefore, the current flowing in both is the same. We will use ohm's law to get the current as follows:
V = I*R
V is the voltage of the battery = 24 v
I is the current we want to get
R is the total resistance = 9.26 ohm
Therefore:
24 = 9.26*I
I = 24 / 9.26
I = 2.59 ampere
Part (b):
To get the voltage across the second resistor, we will again use Ohm's law as follows:
V = I*R
V is the voltage we want to get
I is the current in the second resistor = 2.59 ampere
R is the value of the second resistor = 6.15 ohm
Therefore:
V = I*R
V = 2.59 * 6.15
V = 15.9285 volts
Hope this helps :)