Answer:
0.231 m/s
Explanation:
m = mass attached to the spring = 0.405 kg
k = spring constant of spring = 26.3 N/m
x₀ = initial position = 3.31 cm = 0.0331 m
x = final position = (0.5) x₀ = (0.5) (0.0331) = 0.01655 m
v₀ = initial speed = 0 m/s
v = final speed = ?
Using conservation of energy
Initial kinetic energy + initial spring energy = Final kinetic energy + final spring energy
(0.5) m v₀² + (0.5) k x₀² = (0.5) m v² + (0.5) k x²
m v₀² + k x₀² = m v² + k x²
(0.405) (0)² + (26.3) (0.0331)² = (0.405) v² + (26.3) (0.01655)²
v = 0.231 m/s
Answer:
Distance travelled is 7 meters and the displacement is 3 meters
The appropriate response is the Aneroid barometer. This kind of gauge has an incompletely cleared chamber that progressions shape, packing as barometrical weight increments and growing as weight declines.
I hope the answer will help you.
-- pick a planet from the table
-- take it's mass and radius from the table, and plug them into the big ugly formula above the table
-- do the arithmetic with your pencil or your calculator. The answer is the acceleration of gravity on the planet you picked. Write it down so you don't lose it.
-- do the same for the other 3 planets in the table