Please check the attached picture
The magnitude of the magnetic field inside the solenoid is
.
The given parameters;
- <em>length of the solenoid, L = 91 cm = 0.91 m</em>
- <em>radius of the solenoid, r = 1.5 cm = 0.015 m</em>
- <em>number of turns of the solenoid, N = 1300 </em>
- <em>current in the solenoid, I = 3.6 A</em>
The magnitude of the magnetic field inside the solenoid is calculated as;

where;
is the permeability of frees space = 4π x 10⁻⁷ T.m/A

Thus, the magnitude of the magnetic field inside the solenoid is
.
Learn more here:brainly.com/question/17137684
Answer:
The unit of power is pascal.
Answer: the mass of the second ball is 2.631 kg
Explanation:
Given that;
m1 = 0.877 kg
Initial velocity = V0
Initial momentum = m1 × V0
final velocity of m1 is u1, final velocity of m2 is u2 = v0/2
now final momentum = m1 × u1 + m2 × u2
using momentum conservation;
m1×V0 = m1×u1 + m2×v0/2
m1×(v0 - u1) = m2×V0/2 ----- let this be equation 1
Now, for elastic collision;
m1×v0²/2 = m1×u1²/2 + m2×(v0/2)²/2
m1×(v0² - u1²) = m2×(v0/2)² --------- let this be equation 2
now; equation 2 / equation 1
: V0 + u1 = v0/2
2V0 + 2u1 = V0
2u1 = V0 - 2V0
u1 = -V0/2
now we insert in equ 1
m1×3V0/2= m2×V0/2
m1 × 3 = m2
m2 = 0.877 × 3
m2 = 2.631 kg
Therefore, the mass of the second ball is 2.631 kg