Answer:
(c) The planet must have a mass about the same as the mass of Jupiter,
(d) The planet must be closer to the star than Earth is to the Sun.
Explanation:
Astrometry is the ideal method to detect high-mass planets that are close to their star. That is because the gravitational effect that it will have the planet over its host star will be greater. This effect can be seen as a wobble in the star as a consequence of how they orbit a common center of mass¹. The center of mass will be closer to the most massive object, So, in the case of an extrasolar planet with masses like Jupiter (Jovian), this point will be a little bit farther from the star, making the wobble more notable than in a system with a low-mass planet.
Key terms:
Astrometry: study of the position of the stars over time in the sky.
¹Center of mass: a geometrical point in which the mass from a whole system is summed.
Wherever the change in the body happened will detect the stimuli and send the signals to the brain and Spinal does
To solve this problem, we can use the cosine formula for
calculating the length of the displacement:
c^2 = a^2 + b^2 – 2 a b cos θ
where c is the displacement, a = 3.5 km, b = 4.5 km, and θ
is the angle inside the triangle
Since the geeze turned 40° from west to north, so the
angle inside the triangle must be:
θ = 180 – 40 = 140°
c^2 = 3.5^2 + 4.5^2 – 2 (3.5) (4.5) cos 140
c^2 = 56.63
c = 7.53 km
<span>So the magnitude of the displacement is 7.53 km</span>
Answer:
<h2>1340 J</h2>
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 67 × 20
We have the final answer as
<h3>1340 J</h3>
Hope this helps you
Answer:
A = 62.5 g
using half life formulas, plug in missing variables.