Answer:
A 30 lb weight is attached to the end of a spring. The spring is stretched 6 in. Find the equation of motion if the weight is released from rest a point 3 inches above equilibrium position 。x(,) =-2 sin(81) 32 x(t) =-32 cos(80 O x(r) =-icos(81)
Explanation:
Answer:
this is a law because it is a constant fact of nature
Explanation:
Answer:
d = 4 d₀o
Explanation:
We can solve this exercise using the relationship between work and the variation of kinetic energy
W = ΔK
In that case as the car stops v_f = 0
the work is
W = -fr d
we substitute
- fr d₀ = 0 - ½ m v₀²
d₀ = ½ m v₀² / fr
now they indicate that the vehicle is coming at twice the speed
v = 2 v₀
using the same expressions we find
d = ½ m (2v₀)² / fr
d = 4 (½ m v₀² / fr)
d = 4 d₀o
Answer:
8.91 J
Explanation:
mass, m = 8.20 kg
radius, r = 0.22 m
Moment of inertia of the shell, I = 2/3 mr^2
= 2/3 x 8.2 x 0.22 x 0.22 = 0.265 kgm^2
n = 6 revolutions
Angular displacement, θ = 6 x 2 x π = 37.68 rad
angular acceleration, α = 0.890 rad/s^2
initial angular velocity, ωo = 0 rad/s
Let the final angular velocity is ω.
Use third equation of motion
ω² = ωo² + 2αθ
ω² = 0 + 2 x 0.890 x 37.68
ω = 8.2 rad/s
Kinetic energy,

K = 0.5 x 0.265 x 8.2 x 8.2
K = 8.91 J