Answer:
True
Explanation:
In pi bonds, the electron density concentrates itself between the atoms of the compound but are present on either side of the line joining the atoms. Electron density is found above and below the plane of the line joining the internuclear axis of the two atoms involved in the bond.
Pi bonds usually occur by sideways overlap of atomic orbitals and this leads to both double and triple bonds.
V1M1 = V2M2
<span>V1 × 2.5 = 1 × 0.75,
so V1 = 0.75/2.5
= 0.3 </span>
The molarity of a solution that contains 35.00 g of CuSO4 dissolved in 250.0 mL of water is 0.88M.
<h3>How to calculate molarity?</h3>
The molarity of a solution can be calculated using the following formula:
Molarity = no of moles/volume
According to this question, a solution consists of 35.00 g of CuSO4 dissolved in 250.0 mL of water.
no.of moles of CuSO4 = 35g ÷ 159.6g/mol
no. of moles of CuSO4 = 0.22 moles
Therefore; molarity of CuSO4 solution is calculated as follows:
M = 0.22 ÷ 0.25
M = 0.88M
Therefore, the molarity of a solution that contains 35.00 g of CuSO4 dissolved in 250.0 mL of water is 0.88M.
Learn more about molarity at: brainly.com/question/12127540
Answer:
Correct option is
B
5 liters of CH
4
(g)NO
2
at STP
No. of molecules=
22.4
5
mol=
22.4
5
×N
A
molecules
A) 5ℊ of H
2
(g)
No. of moles=
2
5
mol=
2
5
×N
A
molecules
B) 5l of CH
4
(g)
No. of moles of CH
4
=
22.4
5
mol=
22.4
5
N
A
molecules
C) 5 mol of O
2
=5N
A
O
2
molecules
D) 5×10
23
molecules of CO
2
(g)
Molecules of 5l NO
2
(g) at STP=5l of CH
4
(g) molecules at STP
Therefore, option B is correct.
276 grams of carbon in 23.0 moles