[CO] = 1 mol / 2L = 0.5 M
[
According to the equation:
and by using the ICE table:
CO(g) + H2O(g) ↔ CO2(g) + H2(g)
initial 0.5 0.5 0 0
change -X -X +X +X
Equ (0.5-X) (0.5-X) X X
when Kc = X^2 * (0.5-X)^2
by substitution:
1.845 = X^2 * (0.5-X)^2 by solving for X
∴X = 0.26
∴ [CO2] = X = 0.26
a. 1,4332 g
b. 7.54~g
<h3>Further explanation</h3>
Given
Reaction
MgCl2 (s) + 2 AgNO3 (aq) → Mg(NO3)2 (aq) + 2 AgCl (s)
20 cm of 2.5 mol/dm^3 of MgCl2
20 cm of 2.5 g/dm^3 of MgCl2
Required
the mass of silver chloride - AgCl
Solution
a. mol MgCl2 :

From equation, mol AgCl = 2 x mol MgCl2=2 x 0.05=0.1
mass AgCl(MW=143,32 g/mol)= 0.1 x 143,32=1,4332 g
b. mol MgCl2 (MW=95.211 /mol):

From equation, mol AgCl = 2 x mol MgCl2=2 x 0.0263=0.0526
mass AgCl(MW=143,32 g/mol)= 0.0526 x 143,32=7.54~g
Mass / volume = density
30.943g / 35ml = 0.88408571g/ml
Decomposition,because 1 breaks down into 2
Explanation:
In a galvanic cell, the cathode is positively charged and the anode is negatively charged.
The cathode attracts electron while the anode donates or releases electrons.
Electrons received - Cathode
Electrons donated - Anode