The answer is 62.00 g/mol.
Solution:
Knowing that the freezing point of water is 0°C, temperature change Δt is
Δt = 0C - (-1.23°C) = 1.23°C
Since the van 't Hoff factor i is essentially 1 for non-electrolytes dissolved in water, we calculate for the number of moles x of the compound dissolved from the equation
Δt = i Kf m
1.23°C = (1) (1.86°C kg mol-1) (x / 0.105 kg)
x = 0.069435 mol
Therefore, the molar mass of the solute is
molar mass = 4.305g / 0.069435mol = 62.00 g/mol
Answer:
When cells become damaged or die the body makes new cells to replace them. This process is called cell division. One cell doubles by dividing into two. Two cells become four and so on.
Explanation:
Answer:
Explanation:
1. find the molar mass (amu) of each element and add them to get the whole molar mass.
2. divide the 1 element molar mass with the whole molar mass
3. multiple by 100 and that gives you the % composition.
<h2><u><em>56-57: NaCl</em></u></h2>
1. Na(22.99amu) + Cl (35.453amu)=58.443
2(Na):
= .393
2(Cl):
= .607
3(Na): .393 * 100=39.3%
3(Cl): .607 * 100= 60.7%
<h2><u>58-60 </u>

<u /></h2>
1. K: (39.098)(2)=78.196
_ C: (12.011)(1)= 12.011
_O: (15.99)(3) = 47.997
78.196+12.011+47.997= 138.204
2:K:
= .566 <u>Step </u>3: (.566)(100)= 56.6%
2: C:
= .087 <u>Step 3</u>: (.087)(100)= 8.7%
2: O:
= .347 <u>Step 3</u>: (.347)(100) = 34.7%
<h2>
61-62 
</h2>
1. Fe (55.845)(3)= 167.535
_ O (15.999)(4) = 63.996
167.535+63.996=231.531
2: Fe:
= .724 Step 3: (.724)(100)= 72.4%
2: O :
= .276 Step 3: (.276)(100) = 27.6%
<h2>63-65

</h2>
1.
C(12.011*3)=36.033
H(1.008*5)=5.04 + (1.008*3)=3.024 so its 8.064
O(15.999*3)=47.997
add them: 92.094
2: C:
= .391 Step 3: (.391)(100) = 39.1%
2: H:
= .088 step 3: (.088)(100) = 8.8%
2: O:
= .521 step 3: (.521)(100) = 52.1%