Answer:
The coefficient that should be inserted in front of chlorine is 2
Explanation:
Sn + 2Cl₂ → SnCl₄
As we have 4 atoms of chlorine in product side, we need 4 Cl in reactant side.
Chlorine is a diatomic atom, so if we have 2 mol of it, we are having 4 atoms of Cl.
The law of conservation of mass must be respected in every chemical equation
Answer:
The majority of the molecules move from higher to lower concentration, although there will be some that move from low to high. The overall (or net) movement is thus from high to low concentration.
hope this helps!<3
Answer:
THE NEW PRESSURE OF THE HELIUM GAS AT 2.98 L VOLUME IS 124.8 kPa.
AT AN INCREASE ALTITUDE, THERE IS A LOWER PRESSURE ENVIRONMENT AND THE HELIUM GAS PRESSURE DECREASES AND HENCE AN INCREASE IN VOLUME.
Explanation:
The question above follows Boyle's law of the gas law as the temperature is kept constant.
Boyle's law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Mathematically, P1 V1 = P2 V2
P1 = 150 kPa = 150 *10^3 Pa
V1 = 2.48 L
V2 = 2.98 L
P2 = ?
Rearranging the equation, we obtain;
P2 = P1 V1 / V2
P2 = 150 kPa * 2.48 / 2.98
P2 = 372 *10 ^3 / 2.98
P2 = 124.8 kPa.
The new pressure of the gas when at a height which increases the volume of the helium gas to 2.98 L is 124.8 kPa.
Answer:
Density of a quantity of matter is its mass divided by its volume. The mass of an object depends on the atomic mass of the individual atoms or molecules and the how close the they are compressed together.
Explanation:
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.