Answer:
The half-life time, the team equired for a quantity to reduce to half of its initial value, is 79.67 seconds.
Explanation:
The half-life time = the time required for a quantity to reduce to half of its initial value. Half of it's value = 50%.
To calculate the half-life time we use the following equation:
[At]=[Ai]*e^(-kt)
with [At] = Concentration at time t
with [Ai] = initial concentration
with k = rate constant
with t = time
We want to know the half-life time = the time needed to have 50% of it's initial value
50 = 100 *e^(-8.7 *10^-3 s^- * t)
50/100 = e^(-8.7 *10^-3 s^-1 * t)
ln (0.5) = 8.7 *10^-3 s^-1 *t
t= ln (0.5) / -8.7 *10^-3 = 79.67 seconds
The half-life time, the team equired for a quantity to reduce to half of its initial value, is 79.67 seconds.
2.4(10^3)
=2.4*10^3
=2.4*(10*10*10)
=2400 <span>milliliters
To </span>centiliters is<span> 2400mL= <u>240.0000cl. </u> </span>
what??? i need more information
They are found in group 3 of the periodic table.
B, millimeters because paper is really thin therefore it'd require small measurements for units.