That an ip leak don’t trust it ^^^^^^^^^^
Answer:
If the temperature increases the molecular movement as well, and if it increases the same it will happen with the molecular movement.
Pressure, volume and temperature are three factors that are closely related since they increase the temperature, the pressure usually decreases due to the dispersion of the molecules that can be generated, so the volume also increases.
If the temperature drops, the material becomes denser, its molecules do not collide with each other, their volume and pressure increases.
Explanation:
The pressure is related to the molecular density and the movement that these molecules have.
The movement is regulated by temperature, since if it increases, the friction and collision of the molecules also.
On the other hand, the higher the volume, the less pressure there will be on the molecules, since they are more dispersed among themselves.
(in the opposite case that the volume decreases, the pressure increases)
The grams of glucose are needed to prepare 400g of a 2.00%(m/m) glucose solution g is calculated as below
=% m/m =mass of the solute/mass of the solution x100
let mass of solute be represented by y
mass of solution = 400 g
% (m/m) = 2% = 2/100
grams of glucose is therefore =2/100 = y/400
by cross multiplication
100y = 800
divide both side by 100
y= 8.0 grams
D - for example, Potassium has 1 electron on its outer shell, whilst Chlorine has 7 electrons on its outer shell. Potassium loses one electron to Chlorine so that each of them have a full outer shell. This would form Potassium Chloride.
38.46g
Explanation:
Given parameters:
Mass of CaF₂ = 75.0g
Unknown:
Mass of calcium that can be recovered = ?
Solution:
This is a mass percentage problem and we need to solve it accordingly.
To solve this problem;
Find the molar mass of CaF₂
Find the ratio between the molar mass of Ca and that of CaF₂
Multiply by the given mass
Molar mass of CaF₂ = 40 + (2 x 19) = 78g/mol
Mass of calcium =
x 75 = 38.46g
learn more:
Mass percentage brainly.com/question/8170905
#learnwithBrainly