A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s) with a flow rate of 8.7 m^3/s, 6 mg/L BOD5 and 8.3 mg/L DO. Both streams are at 20°C. After mixing, the river is 3 meters deep and flowing at a velocity of 0.50 m/s. DOsat for this river is 9.0 mg/L. The deoxygenation constant is kd= 0.20 d^-1 and The reaction rate constant k at 20 °C is 0.27 d^-1.
The answer therefore would be the number 0.27 divided by two and then square while getting the square you would make it a binomial.
I wont give the answer but the steps
Your Welcome
Answer: 1766.667 Ω = 1.767kΩ
Explanation:
V=iR
where V is voltage in Volts (V), i is current in Amps (A), and R is resistance in Ohms(Ω).
3mA = 0.003 A
Rearranging the equation, we get
R=V/i
Now we are solving for resistance. Plug in 0.003 A and 5.3 V.
R = 5.3 / 0.003
= 1766.6667 Ω
= 1.7666667 kΩ
The 6s are repeating so round off to whichever value you need for exactness.
I think downwards as that's how most saw's work.