GPS device details are given below.
Explanation:
Even a simple GPS unit has a wide range of settings and features. Because every unit’s operation varies, this article won’t provide step-by-step details. Read the owner's manual to familiarize yourself with it..
If you’d like additional help, you can also sign up for a GPS navigation class at an REI store.
Though steps vary, all GPS receivers do the following basic functions:
Display position: A GPS tells you where you are by displaying your coordinates; it also shows your position on its base map or topo map.
Record tracks: When tracking is turned on, a GPS automatically lays down digital bread crumbs, called “track points,” at regular intervals. You use those later to retrace your steps or to evaluate the path you traveled.
Navigate point-to-point: A GPS directs you by giving you the direction and distance to a location, or “waypoint.” You can pre-mark waypoints by entering their coordinates at home. In the field you can have the unit mark a waypoint at a place you'd like to return to, such as the trailhead or your campsite. A GPS unit provides the bearing and distance “as the crow flies” to a waypoint. Because trails don’t follow a straight line, the bearing changes as you hike. The distance to travel also changes (decreasing, unless you’re heading the wrong direction) as you approach your goal.
Display trip data: This odometer-like function tells you cumulative stats like how far you’ve come and how high you’ve climbed.
GPS and your computer: GPS units come with a powerful software program that lets you manage maps, plan routes, analyze trips and more. Invest the time to learn it and to practice using all of its capabilities.
Answer:
The process of generation of force by the high speed that pushes the jet engine forward is based on Newton’s 2 law of motion ?
Explanation:
1, Newton’s first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force. This postulate is known as the law of inertia.
2,
Newton’s second law is a quantitative description of the changes that a force can produce on the motion of a body. It states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it. The momentum of a body is equal to the product of its mass and its velocity. Momentum, like velocity, is a vector quantity, having both magnitude and direction. A force applied to a body can change the magnitude of the momentum, or its direction, or both.For a body whose mass m is constant, it can be written in the form F = ma, where F (force) and a (acceleration)
3, Newton’s third law states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction.The third law is also known as the law of action and reaction. This law is important in analyzing problems of static equilibrium, where all forces are balanced, but it also applies to bodies in uniform or accelerated motion. The forces it describes are real ones, not mere bookkeeping devices. For example, a book resting on a table applies a downward force equal to its weight on the table. According to the third law, the table applies an equal and opposite force to the book.
<h3>What do one drop, rockers, and steppers all have in common?</h3>
Answer: <u>They </u><u>are </u><u>all </u><u>styles </u><u>of </u><u>reggae </u><u>drumming.</u>
Answer:
R = 160 Ω
Explanation:
For this problem, we will simply apply Ohm's law to find the resistance in the circuit. Ohm's law is as follows:
Voltage = Current x Resistance
We can solve the law for resistance:
Resistance = Voltage / Current
And now we just plug in our values:
Resistance = 5.6V / 35mA
Resistance = 5.6V / 0.035 A
Resistance = 160 Ω
Hence the resistance of the circuit is 160 Ω.
Cheers