1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
6

A(n) is a detailed, structured diagram or drawing.

Engineering
1 answer:
monitta3 years ago
6 0

Answer:

Schematics

Explanation:

A schematic is a detailed structured diagram or drawing. It employs illustrations to help the viewer understand detailed information on the machine or object being described. Its main aim is not to help the observer know what the object looks like physically. It is rather aimed at helping the viewer know how the machine works. This is achieved by only including key and important details to the drawing.

It is most times used in the blueprint and user guides of machines and gadgets used in the home to help users know how these things work so that they can do little fixings should there be such needs.

You might be interested in
According to fire regulations in a town, the pressure drop in a commercial steel, horizontal pipe must not exceed 2.0 psi per 25
bonufazy [111]

Answer:

6.37 inch

Explanation:

Thinking process:

We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.

To determine the pressure drop in the pipe:

Using the Bernoulli equation for mass conservation:

\frac{P1}{\rho } + \frac{v_{2} }{2g} +z_{1}  = \frac{P2}{\rho } + \frac{v2^{2} }{2g} + z_{2} + f\frac{l}{D} \frac{v^{2} }{2g}

thus

\frac{P1-P2}{\rho }  = f\frac{l}{D} \frac{v^{2} }{2g}

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.

Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F

from the tables

Re= 2.01 × 10⁵

Hence, f = 0.018

Therefore, pressure drop, (P1-P2)/p = 2.70 ft

This occurs at ae presure change of 1.17 psi

Correlating with the chart, we find that the diameter will be D= 0.513

                                                                                                      = <u>6.37 in Ans</u>

7 0
3 years ago
Transcript
posledela

Answer:

O is truse is the best answer hhahahha

Explanation:

8 0
3 years ago
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
3 years ago
A container filled with a sample of an ideal gas at the pressure of 150 Kpa. The gas is compressed isothermally to one-third of
lyudmila [28]

Answer: c) 450 kPa

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

P\propto \frac{1}{V}     (At constant temperature and number of moles)

P_1V_1=P_2V_2  

where,

P_1 = initial pressure of gas  = 150 kPa

P_2 = final pressure of gas  = ?

V_1 = initial volume of gas   = v L

V_2 = final volume of gas  = \frac{v}{3}L

150\times v=P_2\times \frac{v}{3}  

P_2=450kPa

Therefore, the new pressure of the gas will be 450 kPa.

7 0
3 years ago
If you had a match and a lantern and a candle in the dark which one would you choose to light.
PSYCHO15rus [73]

Answer:

The match

Explanation:

You can light both the lantern and the candle if you light the match first.

I don't know of this is a homework question, but I answered it anyway :)

5 0
3 years ago
Read 2 more answers
Other questions:
  • Find the resolving power of a Fabry-Perot interferometer in which two silver coated plates have reflectance of ???? = 0.9, if th
    12·1 answer
  • Consider a single crystal of some hypothetical metal that has the BCC crystal structure and is oriented such that a tensile stre
    10·1 answer
  • Classify the terms as related to a thermal system or mechanical system.
    8·1 answer
  • Finally you will implement the full Pegasos algorithm. You will be given the same feature matrix and labels array as you were gi
    12·1 answer
  • Turbine blades mounted to a rotating disc in a gas turbine engine are exposed to a gas stream that is at [infinity] = 1100°C and
    6·1 answer
  • Should you ever grab a tool with expose wiring
    13·2 answers
  • What is meant by the thickness to chord ratio of an aerofoil?
    12·1 answer
  • Which excerpt from "The Chrysanthemums' best reveals that Elisa is proud of her
    6·1 answer
  • Which fields of engineering use fluid power? Explain how these fields make use of fluid power systems: water supply, agricultura
    10·1 answer
  • You want to see both Michael and Meet Wally Sparks. If you purchase tickets for both
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!