Answer:
<h2><em>
6000 counts per second</em></h2>
Explanation:
If a sample emits 2000 counts per second when the detector is 1 meter from the sample, then;
2000 counts per second = 1 meter ... 1
In order to know the number of counts per second that would be observed when the detector is 3 meters from the sample, we will have;
x count per second = 3 meter ... 2
Solving the two expressions simultaneously for x we will have;
2000 counts per second = 1 meter
x counts per second = 3 meter
Cross multiply to get x
2000 * 3 = 1* x
6000 = x
<em></em>
<em>This shows that 6000 counts per second would be observed when the detector is 3 meters from the sample</em>
Answer:
ehdgywi
Explanation:
djhcuowhciwurvgwyirgvy mm. ncmsmsmx. n. mssmsmiwvfiywrvvkjbwviverbladcnviwrgqecocqeboodqeugচঠচবি
Answer:
1. Either larger or smaller than the displacement of either wave acting alone, depending on the signs of the displacements of the two waves.
Answer:
A. evaporation
Explanation:
Evaporation is a surface phenomenon as the molecules of the surface gets sufficient energy to overcome the force of attraction which will help in converting to the vapor phase.
Answer:
option (B)
Explanation:
Young's modulus is defined as the ratio of longitudinal stress to the longitudinal strain.
Its unit is N/m².
The formula for the Young's modulus is given by

where, F is the force applied on a rod, L is the initial length of the rod, ΔL is the change in length of the rod as the force is applied, A is the area of crossection of the rod.
It is the property of material of solid. So, when the 10 wires are co joined together to form a new wire of length 10 L, the material remains same so the young' modulus remains same.