Answer:
v = 4.58 m/s
Explanation:
In order to calculate the speed of the skier when she gets the bottom of the hill, you have to calculate the speed of the skier when she crosses the rough patch.
To calculate the velocity at the final of the rough patch you take into account that the work done by the friction surface is equal to the change in the kinetic energy of the skier:
(1)
Where the minus sign means that the work is against the motion of the skier.
Wf: friction force
m: mass of the skier = 65.0kg
N: normal force = mg
g: gravitational acceleration = 9.8m/s^2
d: distance of the rough patch = 4.00m
v: speed at the end of the rough patch = ?
vo: initial speed of the skier = 6.85m/s
μk: coefficient of kinetic friction = 0.330
You replace the expression for the normal force in the equation (1), and solve for v:

Then, the speed fot he skier at the bottom of the hill is 4.58m/s
Ethylene glycol reduces the cooling efficiency of water because it has a lower heat capacity as compared to water. A substance with low heat capacity would mean that the material only needs a small amount of energy to increase its temperature. So, for ethylene glycol, the heat transfer would be faster decreasing the cooling efficiency.
The net force on a 0.50-cm-diameter eardrum is mathematically given as
F= 0.76969 N
<h3>What is the net force on a 0.50-cm-diameter eardrum?</h3>
Generally, the equation for Pressure is mathematically given as
P = ρgh
Therefore
P= 1000*9.8*4
P= 39200 Pa
Where
A= pi*(0.005/2)^2
Generally, the equation for Net force is mathematically given as
F = PA
F= 39200 *( pi*(0.005/2)^2)
F= 0.76969 N
In conclusion, The net force is
F= 0.76969 N
Read more about Pressure
#SPJ1
Answer: 0.04139m
Explanation:
First, we need to calculate the weight of the man which will be:
Weight = mass × acceleration due to gravity
Weight = mg
Weight = 92.5 × 9.8
Weight = 906.5N
Then, we calculate the force which will be:
F = kx
mg = kx
x = mg/k
x = 906.5/21900
x = 0.04139m.
The spring stretched for 0.04139m.