1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
15

In an engine, an almost ideal gas is compressed adiabatically to half its volume. In doing so, 1850 J of work is done on the gas

. What is the change in internal energy of the gas?
Physics
1 answer:
hammer [34]3 years ago
7 0

Answer:

The value of change in internal energy of the gas = + 1850 J

Explanation:

Work done on the gas (W) =  - 1850 J

Negative sign is due to work done on the system.

From the first law  we know that Q = Δ U + W ------------- (1)

Where Q = Heat transfer to the gas

Δ U = Change in internal energy of the gas

W = work done on the gas

Since it is adiabatic compression of the gas so heat transfer to the gas is zero.

⇒ Q = 0

So from equation (1)

⇒ Δ U = - W ----------------- (2)

⇒ W = - 1850 J (Given)

⇒ Δ U = - (- 1850)

⇒ Δ U = + 1850 J

This is the value of change in internal energy of the gas.

You might be interested in
What is the kinetic energy of a 1130 kg truck that is moving with a velocity of 40 m/s?
Makovka662 [10]

Answer:

The answer is 904,000.

Kinetic energy=1/2mv^2.

1/2×1130×40^2.

1/2×1808000=904,000Joules.

8 0
3 years ago
An isolated charged point particle produces an electric field with magnitude E at a point 2 m away. At a point 1 m from the part
guajiro [1.7K]

Explanation:

The electric field at a distance r from the charged particle is given by :

E=\dfrac{kq}{r^2}

k is electrostatic constant

if r = 2 m, electric field is given by :

E_1=\dfrac{kq}{(2)^2}\\\\=\dfrac{kq}{4}\ .....(1)

If r = 1 m, electric field is given by :

E_2=\dfrac{kq}{r_2^2}\\\\=\dfrac{kq}{1}\ ....(2)

Dividing equation (1) and (2) we get :

\dfrac{E_1}{E_2}=\dfrac{\dfrac{kq}{4}}{kq}\\\\\dfrac{E_1}{E_2}=\dfrac{1}{4}\\\\E_2=4\times E_1

So, at a point 1 m from the particle, the electric field is 4 times of the electric field at a point 2 m.

4 0
2 years ago
A satellite is in a circular orbit around Mars, which has a mass M = 6.40 × 1023 kg and radius R = 3.40 ×106 m.
Pepsi [2]

Answer:

a) The orbital speed of a satellite with a orbital radius R (in meters) will have an orbital speed of approximately \displaystyle \sqrt\frac{4.27 \times 10^{13}}{R}\; \rm m \cdot s^{-1}.

b) Again, if the orbital radius R is in meters, the orbital period of the satellite would be approximately \displaystyle 9.62 \times 10^{-7}\, R^{3/2}\; \rm s.

c) The orbital radius required would be approximately \rm 2.04 \times 10^7\; m.

d) The escape velocity from the surface of that planet would be approximately \rm 5.01\times 10^3\; m \cdot s^{-1}.

Explanation:

<h3>a)</h3>

Since the orbit of this satellite is circular, it is undergoing a centripetal motion. The planet's gravitational attraction on the satellite would supply this centripetal force.

The magnitude of gravity between two point or spherical mass is equal to:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}},

where

  • G is the constant of universal gravitation.
  • M is the mass of the first mass. (In this case, let M be the mass of the planet.)
  • m is the mass of the second mass. (In this case, let m be the mass of the satellite.)  
  • r is the distance between the center of mass of these two objects.

On the other hand, the net force on an object in a centripetal motion should be:

\displaystyle \frac{m \cdot v^{2}}{r},

where

  • m is the mass of the object (in this case, that's the mass of the satellite.)
  • v is the orbital speed of the satellite.
  • r is the radius of the circular orbit.

Assume that gravitational force is the only force on the satellite. The net force should be equal to the planet's gravitational attraction on the satellite. Equate the two expressions and solve for v:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}} = \frac{m \cdot v^{2}}{r}.

\displaystyle v^2 = \frac{G \cdot M}{r}.

\displaystyle v = \sqrt{\frac{G \cdot M}{r}}.

Take G \approx 6.67 \times \rm 10^{-11} \; m^3 \cdot kg^{-1} \cdot s^{-2},  Simplify the expression v:

\begin{aligned} v &= \sqrt{\frac{G \cdot M}{r}} \cr &= \sqrt{\frac{6.67 \times \rm 10^{-11} \times 6.40 \times 10^{23}}{r}} \cr &\approx \sqrt{\frac{4.27 \times 10^{13}}{r}} \; \rm m \cdot s^{-1} \end{aligned}.

<h3>b)</h3>

Since the orbit is a circle of radius R, the distance traveled in one period would be equal to the circumference of that circle, 2 \pi R.

Divide distance with speed to find the time required.

\begin{aligned} t &= \frac{s}{v} \cr &= 2 \pi R}\left/\sqrt{\frac{G \cdot M}{R}} \; \rm m \cdot s^{-1}\right. \cr &= \frac{2\pi R^{3/2}}{\sqrt{G \cdot M}} \cr &\approx  9.62 \times 10^{-7}\, R^{3/2}\; \rm s\end{aligned}.

<h3>c)</h3>

Convert 24.6\; \rm \text{hours} to seconds:

24.6 \times 3600 = 88560\; \rm s

Solve the equation for R:

9.62 \times 10^{-7}\, R^{3/2}= 88560.

R \approx 2.04 \times 10^7\; \rm m.

<h3>d)</h3>

If an object is at its escape speed, its kinetic energy (KE) plus its gravitational potential energy (GPE) should be equal to zero.

\displaystyle \text{GPE} = -\frac{G \cdot M \cdot m}{r} (Note the minus sign in front of the fraction. GPE should always be negative or zero.)

\displaystyle \text{KE} = \frac{1}{2} \, m \cdot v^{2}.

Solve for v. The value of m shouldn't matter, for it would be eliminated from both sides of the equation.

\displaystyle -\frac{G \cdot M \cdot m}{r} + \frac{1}{2} \, m \cdot v^{2}= 0.

\displaystyle v = \sqrt{\frac{2\, G \cdot M}{R}} \approx 5.01\times 10^{3}\; \rm m\cdot s^{-1}.

5 0
3 years ago
What did B.F. skinnier believe drove ones behaviors
Nastasia [14]
He thought that behavior is determined by its consequences.
5 0
3 years ago
Chet plans an experimental investigation to see how well a new fertilizer works on daisies. The fertilizer must be dissolved in
IceJOKER [234]

Answer:

The answer is D or Fertilizer, sorry for the late answer

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • A car is traveling in a race. The car went from the initial velocity of 35 m/s to the final velocity of 65 m/s in 5 seconds. Wha
    11·1 answer
  • Calculate the magnitude of the acceleration due to gravity on the surface of Earth due to the Moon.
    13·1 answer
  • If 25.0 g of water at 21c is mixed with 45.0 g of water at 75c, what is the final temperature of the mixture?
    14·1 answer
  • Why does helium have more spectral lines than hydrogen?
    15·1 answer
  • If the released energy of one earthquake is 100 times that of another, how much greater is its magnitude on the richter scale?
    13·1 answer
  • А_is an area of land that rises very high above the land around it.
    5·2 answers
  • 10. The table below shows the melting point and the boiling point of four substances.
    13·1 answer
  • What is missing from the solubility graph shown on the right?
    10·2 answers
  • At which position is the LOWEST potential energy?
    7·1 answer
  • In a physics lab, you measure the vibrational-rotational spectrum of hcl. the estimated separation between absorption peaks is:_
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!