Hi friend
--------------
Your answer
-------------------
Water = H2O
Number of molecules in one mole of water = 6.022 × 10²³ [Avogadro's constant]
Given number of molecules = 2.52 × 10²³
So,
------
Number of moles =

HOPE IT HELPS
Answer:
<u>7.44 grams CaCl2 will produce 10.0 grams KCl.</u>
Explanation:
The equation is balanced:
I've repeated it here, with the elements corrected for their initial capital letter.
CaCl2( aq) K2CO3( aq) → 2KCl( aq) CaCO3( aq)
This equation tells us that 1 mole of CaCl2 will produce 2 moles of KCl.
If we want 10.0g of KCl, we need to convert that mass into moles KCl by dividing by the molar mass of KCl, which is 74.55 grams/mole.
(10.0 grams KCl)/(74.55 grams/mole) = 0.1341 moles of KCl.
We know that we'll need half that amount of moles CaCl2, since the balanced equation says we'll get twice the moles KCl for every one mole CaCl2.
So we'll need (0.1341 moles KCl)*(1 mole CaCl2/2moles KCl) = 0.0671 moles CaCl2.
The molar mass of CaCl2 is 110.98 grams/mole.
(0.0671 moles CaCl2)*(110.98 grams/mole) = 7.44 grams CaCl2
<u>7.44 grams CaCl2 will produce 10.0 grams KCl.</u>
Answer:
<em>415.15 mL</em>
Explanation:
To solve the statement, you can use the law of Charles - Gay Lussac, which states that "<em><u>the volume of gas is directly proportional to its temperature at constant pressure</u></em>." Mathematically:

You can calculate the volume V₂ Clearing it from the equation and replacing the values granted by the statement to perform the calculation:
V₂ = V₁ x T₂ / T₁ = 222 mL x 56.1 ° C / 30.0 ° C = 415.15 mL
Therefore, <em>the gas at 56.1 ° C will occupy a volume of 415.15 mL</em>
It is the mass of one mole of the substance.