This question is based on Dalton's Law of Partial Pressure which states that "the total pressure of a system of gas is equal to the sum of the pressure of each individual gas (partial pressure).
Now, Partial Pressure of a gas = (mole fraction) × (total pressure)
⇒ Partial Pressure of Hydrogen =

×
= 0.31 atm
Thus the Partial Pressure of Hydrogen in the container is
0.31 atm.
Answer: Eating healthy is a postive way
Explanation:
34% I believe
Hope this helps!
STSN
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>