Explanation:
Generally, heat flows from a hot environment to a cold (lesser temperature) environment. In this case, the soup is the hot environment and the air is the cold temperature.
Heat would continue to flow from one environment to another until thermal equilibrium is reached. At this thermal equilibrium, both environments would have the same temperature.
Compound is X3Y2.
Hope this helps you!
Answer: The mass of the sample will be 1417.7 grams.
Explanation:
We are given:

This means that 1 mole of NaCl has an enthalpy of fusion of 30.2 kJ
1 mole of NaCl has a mass of 58.44 grams.
So, 30.2 kJ of heat is require for a mass 58.44 grams of NaCl
So, 732.6 kJ of heat will be required for =
= 1417.65 grams of NaCl.
Hence, the mass of NaCl sample will be 1417.7 grams.
0.114 mol/l
The equilibrium equation will be:
Kc = ([Br2][Cl2])/[BrCl]^2
The square factor for BrCl is due to the 2 coefficient on that side of the equation.
Now solve for BrCl, substitute the known values and calculate.
Kc = ([Br2][Cl2])/[BrCl]^2
[BrCl]^2 * Kc = ([Br2][Cl2])
[BrCl]^2 = ([Br2][Cl2])/Kc
[BrCl] = sqrt(([Br2][Cl2])/Kc)
[BrCl] = sqrt(0.043 mol/l * 0.043 mol/l / 0.142)
[BrCl] = sqrt(0.001849 mol^2/l^2 / 0.142)
[BrCl] = sqrt(0.013021127 mol^2/l^2)
[BrCl] = 0.114110152 mol/l
Rounding to 3 significant figures gives 0.114 mol/l