Answer:

Explanation:
Given that
x= 150 ft

y= 14 ft
From the diagram

When ,x= 150 ft and y= 14 ft


z=150.74 ft

By differentiating with respect to time t


Here x is constant that is why


Now by putting the values in the above equation we get



Therefore the distance between balloon and observer increasing with 0.65 ft/s.
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Synoptic chart or map is the one that shows the meteorological conditions over an extended region for the particular time period. The other names for synoptic chart are, synoptic scale, large scale or cyclonic scale.
Answer: you cant see sound waves but youcan defiently hear them . when the travle through difrent levels they depend on how loud the sound wave is if you hear a loud sound its called a loud sound wave
Explanation: