Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Explanation:
→ Volume of cone = πr² × h/3
Here,
- Radius (r) = 13 cm
- Height (h) = 27 cm
→ Volume of cone = π(13)² × 27/3 cm³
→ Volume of cone = 169π × 9 cm³
→ Volume of cone = 1521π cm³
→ Volume of cone = 1521 × 22/7 cm³
→ Volume of cone = 33462/7 cm³
→ <u>Volume of cone = 4780.28 cm³</u>
Answer:
Waves transfer energy, not motion
Answer:
M = ρ V = 9 gm/cm^ 3 * cm^3 = 27 gm
a = (V2 - V1) / t = (6 - 2) m/s / 12 s = 1/3 m/s^2 the acceleration
F = M a = 27 gm * 1/3 m/s^2 = 9 dynes net force applied