Answer:
(a) 0.345 T
(b) 0.389 T
Solution:
As per the question:
Hall emf, 
Magnetic Field, B = 0.10 T
Hall emf, 
Now,
Drift velocity, 

Now, the expression for the electric field is given by:
(1)
And

Thus eqn (1) becomes
where
d = distance
(2)
(a) When 

(b) When 

Answer:
R = 8.01 m
Explanation:
We can solve this problem using the projectile launch equations. The jump length is the throw range
R = v₀² sin 2θ / g
in the exercise they give us the initial speed of 9.14 m / s and in the launch angle 35º
let's calculate
R = 9.14² sin (2 35) / 9.8
R = 8.01 m
this is the jump length
Answer: 
Explanation:
We have the following equation:

We have to find
this means we have to isolate it:


Answer:
F = 400 N
Explanation:
Given,
The acceleration of the car, a = 8 m/s²
The mass of the passenger, m = 50 Kg
The force acting on a body is equal to the product of the mass and its acceleration
F = m x a newtons
Substituting the given values in the above equation,
F = 50 Kg x 8 m/s²
= 400 N
Hence, the force exerted by the person on the seat belt is, F = 400 N
Answer:
Anything in an experiment that remains unchanged.
Explanation:
An example could be the temperature of the laboratory room. If there is something that has an effect on an experiment that is not variable, it is a constant. Another constant could be, say, if you were doing calculations with the same amount and kind of fluid throughout the experiment, then that fluid would also be a constant.