Answer:
1.170*10^-3 m
3.23*10^-32 m
Explanation:
To solve this, we apply Heisenberg's uncertainty principle.
the principle states that, "if we know everything about where a particle is located, then we know nothing about its momentum, and vice versa." it also can be interpreted as "if the uncertainty of the position is small, then the uncertainty of the momentum is large, and vice versa"
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
If we make Δx the subject of formula, by rearranging, we have
Δx = h / 4π * m(e).Δv
on substituting the values, we have
for the electron
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 5.67*10^-31
Δx = 1.170*10^-3 m
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.033*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 0.021
Δx = 3.23*10^-32 m
therefore, we can say that the lower limits are 1.170*10^-3 m for the electron and 3.23*10^-32 for the bullet
Answer:
780 m to travel north
Explanation:
6 m over = 750
53 degree so it will take about 2 min to reach the destination
Answer: 1,600 seconds
Explanation:
31,360/9.8 = 3,200.
Then divide 3,200/2 = 1,600
Gravity, acceleration, kinetic energy, the atmosphere
Answer:
Pressure of the gas = 12669 (Pa) and height of the oil is 1,24 meters
Explanation:
First, we can use the following sketch for an easy understanding, in the attached image we can see the two pressure gauges the one with mercury to the right and the other one with oil to left. We have all the information needed in the mercury pressure gauge, so we can determine the pressure inside the vessel because the fluid is a gas it will have the same pressure distributed inside the vessel (P1).
Since P1 = Pgas, we can use the same formula, but this time we need to determine the height of the column of oil in the pressure gauge.
The result is that the height of the oil column is higher than the height of the one that uses mercury, this is due to the higher density of mercury compared to oil.
Note: the information given in the units of the fluids is not correct because the density is always expressed in units of (mass /volume)