One isomer is formed
1,1- Dichloroethane is the isomer.
If another hydrogen of c2h5cl is replaced by a chlorine atom to yield c2h4cl2, it would result in one isomer.
- In contrast to 1,2-dichloroethane, which has two chlorine atoms connected to distinct carbon atoms, 1,1-dichloroethane has two chlorine atoms bound to the same carbon atom.
- Isomers are each of two or more compounds having the same formula but various atom arrangements in the molecule and unique characteristics.
<h3>What three types of isomers are there?</h3>
- Chain isomers
- Functional group isomers
- Positional isomers
These are the three different categories of structural isomers.
<h3>How is an isomer recognized?</h3>
- Their bonding patterns and the way they occupy three-dimensional space can be used to distinguish them.
- Determine the bonding patterns of structural (constitutional) isomers.
- Although the atoms in the compounds are the same, their connections create various functional groups.
<h3>What makes isomers significant?</h3>
- Because two isomers might have the same chemical formula but different chemical structures, they are significant.
- The molecule's properties are influenced by its structure.
To learn more about isomers visit:
brainly.com/question/12796779
#SPJ4
Answer:
Cohesive forces are greater than adhesive forces
Step-by-step explanation:
The attractive forces between water molecules and the wax on a freshly-waxed car (adhesive forces) are quite weak.
However, there are strong attractive forces (cohesive forces) between water molecules.
The water molecules are only weakly attracted to the wax, so the cohesive forces pull the water molecules together to form beads
.
I think 14 are produced because if you go up by that you get it
Answer:
500N/m²
Explanation:
The Pressure can be calculated using the formula:
P = F/A
Where;
F = force (N)
A = Area (m²)
Based on the information provided in the question, F = 30N, A = 0.06m²
P = F/A
P = 30/0.06
P = 500N/m²
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.