<u>Answer</u>
1) A. 96 Candelas
2) A. Both of these types of lenses have the ability to produce upright images.
3) C. 5 meters
<u>Explanation</u>
Q1
The formula for calculation the luminous intensity is;
Luminous intensity = illuminance × square radius
Lv = Ev × r²
= 6 × 4²
= 6 × 16
= 96 Candelabra
Q2
For converging lenses, an upright image is formed when the object is between the lens and the principal focus while a diverging lens always forms and upright image.
A. Both of these types of lenses have the ability to produce upright images.
Q3
Luminous intensity = illuminance × square radius
square radius = Luminous intensity/ illuminance
r² = 100/4
= 25
r = √25
= 5 m
Convergent boundaries form earthquakes, which forms mountains and islands.
Given Information:
Initial speed = u = 3.21 yards/s
Acceleration = α = 1.71 yards/s²
Final speed = v = 7.54 yards/s
Required Information:
Distance = s = ?
Answer:
Distance = s = 13.61
Explanation:
We are given the speeds and acceleration of the runner and we want to find out how much distance he covered before being tackled.
We know from the equations of motion,
v² = u² + 2αs
Where u is the initial speed of the runner, v is the final speed of the runner, α is the acceleration of the runner and s is the distance traveled by the runner.
Re-arranging the above equation for distance yields,
2αs = v² - u²
s = (v² - u²)/2α
s = (7.54² - 3.21²)/2×1.71
s = 46.55/3.42
s = 13.61 yards
Therefore, the runner traveled a distance of 13.61 yards before being tackled.
It really depends on the angle where you look at it from and what type of glass/shape they are in. Mine always appeared pretty close even when it wasn't.
Source: Had 5 fish of my own.
Have a lovely day! ~Pooch ♥