Answer: 14 m/s
Explanation:
The speed
of a sound wave is given by the following equation:
Where:
is the wavelength of the sound wave
Hence:
Answer:
The sphere C carries no net charge.
Explanation:
- When brougth close to the charged sphere A, as charges can move freely in a conductor, a charge equal and opposite to the one on the sphere A, appears on the sphere B surface facing to the sphere A.
- As sphere B must remain neutral (due to the principle of conservation of charge) an equal charge, but of opposite sign, goes to the surface also, on the opposite part of the sphere.
- If sphere A is removed, a charge movement happens in the sphere B, in such a way, that no net charge remains on the surface.
- If in such state, if the sphere B (assumed again uncharged completely, without any local charges on the surface), is touched by an initially uncharged sphere C, due to the conservation of charge principle, no net charge can be built on sphere C.
Answer:

29010.53917 m
Explanation:
= Density of asteroid = 2 g/cm³
V = Volume
d = Diameter = 10 km
r = Radius = 
v = Velocity = 11 km/s
= Heat vaporization of water = 
= Change in temperature = 100-20
Mass is given by

The kinetic energy is

Heat is given by

Mass of water is 
Volume is 
Amount of water is 
If it were a cube

The height of the water would be 29010.53917 m
That they travel in a vacuum. All other waves require a medium in which they wave.
Answer:
Density of liquid = 4730 kg/m³
Atmospheric pressure on planet X = 8401.7 N/m²
Explanation:
Pressure, P = ρgh where ρ = density of liquid, g =9.8 m/s² and h = height of column at earth's surface = 2185 mm. Since P = atmospheric pressure, for mercury, P = ρ₁gh₁ where ρ₁ = 13.6 g/cm³ and h₁ = 760 mm
So, ρgh = ρ₁gh₁
ρ = ρ₁h₁/h = 13.6 g/cm³ × 760/2185 = 4.73 g/cm³ = 4730 kg/m³
The atmospheric pressure on planet X
P = ρg₁h₃ g₁ = g/4 and h₃ = 725 mm = 0.725 m
on planet X
P = ρg₁h₃ = (4730 kg/m³ × 9.8 m/s² × 0.725 m)/4 = 8401.7 N/m²