<span>When the electron in a hydrogen atom transitions from a high energy state to a lower energy state, the energy lost from the electron is used to produce a photon corresponding to the loss of energy. That photon will correspond to exactly 1 wavelength. And since a hydrogen atom has only 1 electron, at any given moment, it can only produce 1 photon. And in order to simultaneously produce 4 photons for 4 spectral lines, that would require a simultaneous transition of 4 electrons which is 3 too many for a hydrogen atom.</span>
The lever family and the inclined plane family.
Answer:
They all have the same number of protons but different numbers of neutrons.
Explanation:
Elements will always have the same number of protons no matter the isotopes. Isotopes only change the number of neutrons. Silicon will always have 14 protons. So silicon-28 has 14 protons and 14 neutrons. Silicon-29 has 14 protons and 15 neutrons. Silicon-30 has 14 protons and 16 neutrons.
Mario places 10 mL of water in a test tube and heats the liquid over a Bunsen burner for 2 minutes. After removing the test tube from the Bunsen burner, there are 6 mL of water left in the test tube. This experiment is a good example of a <span>physical change involving phase changes. </span>