Answer:
Sarah is right
Explanation:
This is an exercise that differentiates between scalars and vectors.
A scalar is a number, instead a vector is a number that represents the module in addition to direction and sense.
In this case, the distance (scalar) traveled is a number, which is why it is worth 1500m, but the displacement is a vector and since the point where it leaves is the same point where the vector's modulus arrives is zero, so the DISPLACEMENT VECTOR is zero
consequently Sarah is right
Answer:
ΔT = 1.22*10^-3 °C
Explanation:
First, you calculate the potential energy of the bird when it is at 35 m high. The potential energy is also the mechanical energy of the bird in this case.

m: mass of the bird = 0.75kg
g: gravitational constant = 9.8m/s^2
h: height = 35m

All this energy is given to the water. You use the following formula in order to calculate the change in temperature:

m: mass of the water = 50kg
c: specific heat of water = 4186 J/kg°C
Q is equal to U (potential energy of the bird) because the bird gives all its energy to water. By doing ΔT the subject of the formula you obtain:

hence, the maximum rise in temperature is 0.00122 °C
MA = Fwithout help/Fwith machine
MA = 1600/320 = 5
Answer:
The riders are <u>radially</u> accelerating.
Explanation:
The Ferris wheel is making a circular motion. If it is moving with constant velocity, than the acceleration is

towards the center of the wheel.
So, the riders are subject to a constant and radial acceleration, which is called the centripetal acceleration.
The letter “j” is never found on the periodic table. As for numbers, there’s an infinite amount