The rock would be at a point 12 m from water at a time <u>4.8 s</u>.
Take the origin of the coordinate system at the top of the cliff. It is thrown upwards with a velocity u. When the rock is at a point 12 m from water, calculate the vertical displacement of the rock from the origin.

Use the equation of motion,

The rock falls under the acceleration due to gravity, directed down wards.
Substitute 18 m/s for u, -26 m for y and -9.8 m/s² for a=g.

Solve the quadratic equation for t.

Taking only the positive value,

After a time of <u>4.8 s</u> the rock would be at a distance of 12 m from water.
The Answer Is Push
Hope This Helps !
Answer:
d. The length of the string is equal to one-half of a wavelength
Explanation:
A stretched string of length L, fixed at both ends, is vibrating in its third harmonic. How far from the end of the string can the blade of a screwdriver be placed against the string without disturbing the amplitude of the vibration
a. The length of the sting is equal to one-quarter of a wavelength.b. The length of the string is equal to the wavelength.c. The length of the string is equal to twice the wavelength.d. The length of the string is equal to one-half of a wavelength
e. The length of the string is equal to four times the wavelength
A stretched string of length L fixed at both ends is vibrating in its third harmonic H
How far from the end of the string can the blade of a screwdriver be placed against the string without disturbing the amplitude of the vibration
d. The length of the string is equal to one-half of a wavelength
There are two points during vibration , the node and the antinode
the node is the point where the amplitude is zero.
from the third harmonics, there are two nodes. The first node is half of the wavelength which is the closest to the fixed point.
for third harmonics=3/2lamda
Answer:
Work done will be 78.76 J
Explanation:
We have given initial volume of the gas 
Pressure is given by 
Final volume 
Change in volume 
We know that work done is given by

Work done will be 78.76 J