Recall this kinematic equation:
a = 
This equation gives the acceleration of the object assuming it IS constant (the velocity changes at a uniform rate).
a is the acceleration.
Vi is the initial velocity.
Vf is the final velocity.
Δt is the amount of elapsed time.
Given values:
Vi = 0 m/s (the car starts at rest).
Vf = 25 m/s.
Δt = 10 s
Substitute the terms in the equation with the given values and solve for a:
a = 
<h3>a = 2.5 m/s²</h3>
The most probable answer for this question would be that almost every life process requires specialized cells in multicellular organisms. To simply put it, cells of multicellular organisms are specialized in a way that they are all grouped into their respective tissues and these tissues are all grouped into their respective organs and these organs are all grouped together into their respective systems and these systems make up the multicellular organisms. These systems have their own functions in maintaining and sustaining the life that the organisms has. The organs have their own functions as well, thus specialized cells are mostly needed in respiration, digestion, circulation, movement, excretion, reproduction, immunity, coordination, and synthesis.
Answer:
33 kg m/s
Explanation:
The momentum of an object is given by:

where
m is the mass of the object
v is the velocity of the object
In this problem, the total mass of the child and the wagon is m =22 kg, while the velocity is v = 1.5 m/s, therefore the momentum is

To solve this problem it is necessary to apply the concepts related to the conservation of angular momentum. This can be expressed mathematically as a function of inertia and angular velocity, that is:

Where,
I = Moment of Inertia
= Angular Velocity
For the given object the moment of inertia is equivalent to

Considering that the moment of inertia varies according to distance, and that there are two of these without altering the mass we will finally have to




Our values are given as,

Replacing we have,


Therefore the angular speed after the catch slips is 0.2rad/s
Answer:
0.315
Explanation:
resolving weight into components and applying second law of motion we obtain the result
All has been explained in attachment