1.062 mol/kg.
<em>Step 1</em>. Write the balanced equation for the neutralization.
MM = 204.22 40.00
KHC8H4O4 + NaOH → KNaC8H4O4 + H2O
<em>Step 2</em>. Calculate the moles of potassium hydrogen phthalate (KHP)
Moles of KHP = 824 mg KHP × (1 mmol KHP/204.22 mg KHP)
= 4.035 mmol KHP
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 4.035 mmol KHP × (1 mmol NaOH/(1 mmol KHP)
= 4.035 mmol NaOH
<em>Step 4</em>. Calculate the mass of the NaOH
Mass of NaOH = 4.035 mmol NaOH × (40.00 mg NaOH/1 mmol NaOH)
= 161 mg NaOH
<em>Step 5</em>. Calculate the mass of the water
Mass of water = mass of solution – mass of NaOH = 38.134 g - 0.161 g
= 37.973 g
<em>Step 6</em>. Calculate the molal concentration of the NaOH
<em>b</em> = moles of NaOH/kg of water = 0.040 35 mol/0.037 973 kg = 1.062 mol/kg
Answer:
2 circles one proton and one nucleon.draw quarks within each. strong nuclear force within protons between quarks and residual strong force between proton and nucleon (up,up,down in proton)
Explanation:
Answer: This is true because kinetic energy depends on speed. If there's no speed, then there is no kinetic energy.
Answer:
Pascal's principle : Pressure applied to an enclosed fluid is transmitted undiminished to every part of the fluid, as well as to the walls of the container.
A common application of this is a hydraulic lift used to raise a car off the ground so it can be repaired at a garage. A small force applied to a small-area piston is transformed to a large force at a large-area piston. If a car sits on top of the large piston, it can be lifted by applying a relatively small force to the smaller piston, the ratio of the forces being equal to the ratio of the areas of the pistons.
Explanation: