Answer:
A single molecule of water has been isolated for the first time by trapping it in a fullerene cage. Water molecules are never found alone — they are always hydrogen-bonded to other molecules of water or polar compounds.
While making small volumes of pure water in a lab is possible, it's not practical to “make” large volumes of water by mixing hydrogen and oxygen together. The reaction is expensive, releases lots of energy, and can cause really massive explosions.
While making small volumes of pure water in a lab is possible, it's not practical to “make” large volumes of water by mixing hydrogen and oxygen together. The reaction is expensive, releases lots of energy, and can cause really massive explosions.
A water molecule consists of three atoms; an oxygen atom and two hydrogen atoms, which are bond together like little magnets. The atoms consist of matter that has a nucleus in the centre. The difference between atoms is expressed by atomic numbers.
Explanation:
Answer:
the smallest mass of material that can sustain a chain reaction
Explanation:
Critical mass refers to the smallest possible mass of a fissionable material that can sustain a chain reaction
<u>Answer and Explanation:</u>
Mercury combines with sulfur as follows -
Hg + S = HgS
Hg = 200,59
S = 32,066 Therefore 1.58 g of Hg will react with -
1.58 multiply with 32,066 divide by 200,96 of sulfur.
= 0.25211 g S
This will form 1.58 + 0.25211 g HgS = 1.83211 g HgS
The amount of S remaining = 1.10 - 0.25211 = 0.84789 g
Answer:
3.74 x 10²² particles
Explanation:
Given parameters:
Mass of compound = 1.43g
Molar mass of compound = 23g
Unknown:
Number of particles of sodium = ?
Solution:
To find the number of particles of Na in the compound, we need to obtain the mass of sodium from the total mass given;
Mass of sodium = 
= 
= 1.43g
Now find the number of moles of this amount of Na in the sample;
Number of moles =
=
= 0.062mole
Now;
1 mole of substance = 6.02 x 10²³ particles
0.062 mole of substance = 0.062 x 6.02 x 10²³ particles
= 3.74 x 10²² particles