Answer:
20cm
Explanation:
A convex lens has a positive focal length and the object placed in front of it produce both virtual and real image <em>(image distance can be negative or positive depending on the nature of the image</em>).
According to the lens equation
where;
f is the focal length of the lens
u is the object distance
v is the image distance
If the magnification is - 0.6
mag = v/u = -0.5
v = -0.5u
since v = 10cm
10 = -0.5u
u = -10/0.5
u =-20 cm
Substitute u = -20cm ( due to negative magnification)and v = 10cm into the lens formula to get the focal length f

Hence the focal length of the convex lens is 20cm
It is the branch of science, in which we study different phenomena of atmosphere including climate and weather.
<span>
as we know that the velocity vectors are at right angles
magnitude = ?
hypotenuse of a right
triangle.
v^2 = 90^2 + 4^2
v^2 = 8116
Taking the square root of both sides here we get,
v = 90.1 m/s
hope it helps
</span>
Well, the thing is: we don't really know, as we don't even know how many species there are on earth.
If we take a look at the estimates of <span>World Wide Fund for Nature, an organization that works toward combating species extinction, their estimates vary from 200 to 100 000 - but a probable number is 20 000 (d). </span>
<span />