1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
3 years ago
5

The video shows an animated billiards experiment in which a cue ball strikes a glued-in-place eight-ball. which of the following

explains why the momentum of the eight-ball is conserved?
Physics
1 answer:
riadik2000 [5.3K]3 years ago
8 0
Suppose object A<span> is a cue ball and object </span>B<span> is an eight ball on a pool table. If the cue ball strikes the eight ball, the cue ball exerts a force on the eight ball that sends it rolling toward the pocket. At the same time, the eight ball exerts an equal and opposite force on the cue ball that brings it to a stop. Note that both the cue ball and the eight ball each experience a change in momentum. However, the sum of the momentum of the cue ball and the momentum of the eight ball remains constant throughout.</span>
You might be interested in
"A uniform cylinder of mass M and radius R is rolling without slipping. The velocity of its center of mass is v. What is the cyl
Goshia [24]

Answer:

Explanation:

Given

mass of cylinder is M

radius R

velocity of center of mass is v

As there is no slipping therefore cylinder will rotate as well as translate

Moment of inertia of cylinder I=\frac{MR^2}{2}

Kinetic Energy of cylinder K.E.=\frac{1}{2}Mv^2

Rotational energy R.E.=\frac{1}{2}I\omega ^2

for rolling

v=\omega \times r

where \omega =angular\ velocity\ of\ cylinder

R.E.=\frac{1}{2}\times \frac{MR^2}{2}\times (\frac{v}{R})^2=\frac{1}{4}Mv^2

Total kinetic Energy =\frac{1}{2}Mv^2+\frac{1}{4}Mv^2=\frac{3}{4}Mv^2

6 0
3 years ago
In 2007, michael carter (u.s.) set a world record in the shot put with a throw of 24.77 m. what was the initial speed of the sho
Serga [27]

The initial speed of the shot is 15.02 m/s.

The Shot put is released at a height y<em> </em>from the ground with a speed u. It is released at an angle θ to the horizontal. In a time t, the shot put travels a distance <em>R</em> horizontally.

Pl refer to the attached diagram.

Resolve the velocity u into horizontal and vertical components, u ₓ=ucosθ and uy=u sinθ. The horizontal component remains constant in the absence of air resistance, while the vertical component varies due to the action of the gravitational force.

Write an expression for R.

R=u_xt=(ucos \theta)t

Therefore,

t=\frac{R}{ucos\theta} .......(1)

In the time t, the net displacement of the shotput is y in the downward direction.

Use the equation of motion,

y=u_yt-\frac{1}{2}gt^2=(usin\theta) t-\frac{1}{2}gt^2

Substitute the value of t from equation (1).

y=(ucos\theta)(\frac{R}{ucos\theta} )-\frac{1}{2} g(\frac{R}{ucos\theta} )^2\\ =Rtan\theta-(\frac{gR^2}{2u^2cos^2\theta} )

Substitute -2.10 m for y, 24.77 m for R and 38.0° for θ and solve for u.

y=Rtan\theta-(\frac{gR^2}{2u^2cos^2\theta} )\\ (-2.10m)=(24.77 m)(tan38.0^o)-\frac{(9.8 m/s^2)(24.77m)^2}{2u^2(cos38.0^o)^2} \\ u^2=225.71(m/s)^2\\ u=15.02m/s

The shot put was thrown with a speed 15.02 m/s.




7 0
3 years ago
The low areas created as a sound wave propagates are called rarefactions
qwelly [4]

The answer is; pressure

The sound is a longitudinal wave meaning the particles vibrate parallel to the direction of the wave. Sound waves, therefore, produce compression (akin to the crest in a transverse wave) and rarefaction regions (akin to a trough in a transverse wave) as its energy is propagated in the medium.  


8 0
3 years ago
Read 2 more answers
How does work affect energy between objects so it can cause a change in the form of energy?
mihalych1998 [28]

Answer:

Doing work' is a way of transferring energy from one object to another, energy is transferred when a force moves through a distance.

Explanation:  So more energy, more work done bc u transferred more energy to move the object and doing the work. and if you only use a little of energy, the work done also only a little.

5 0
2 years ago
Read 2 more answers
g a small smetal sphere, carrying a net charge is held stationarry. what is the speed are 0.4 m apart
weeeeeb [17]

Complete Question

A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.

Answer:

The value v_2  =  4 \sqrt{10} \  m/s

Explanation:

From the question we are told that

   The  charge on the first sphere is  q_1  =  2\mu C  =  2*10^{-6} \  C

    The charge on the second sphere is  q_2 =  8 \mu C = 8*10^{-6} \  C

     The  mass of the second charge is m  =  1.50 \  g  =  1.50 *10^{-3} \ kg

      The  distance apart is  d =  0.4 \  m

      The  speed of the second  sphere is  v_1  =  20 \  ms^{-1}

Generally the total energy possessed by when q_2 and  q_1 are separated by 0.8 \  m is mathematically represented

     Q =  KE + U

Here KE   is  the kinetic energy which is mathematically represented as

     KE  =  \frac{1 }{2}  m (v_1)^2

substituting value

     KE  =  \frac{1 }{2}  * ( 1.50 *10^{-3}) (20 )^2

     KE  =  0.3 \  J

And  U is  the  potential  energy which is mathematically represented as

        U  =  \frac{k *  q_1 *  q_2  }{d }

substituting values

       U  =  \frac{9*10^9 *  2*10^{-6} * 8*10^{-6}  }{0.8 }

      U  =  0.18 \  J

So

       Q =  0.3 +  0.18

       Q =  0.48 \  J

Generally the total energy possessed by when q_2 and  q_1 are separated by 0.4 \  m is mathematically represented

         Q_f =  KE_f + U_f

Here KE_f is  the kinetic energy which is mathematically represented as

     KE_f  =  \frac{1 }{2}  m (v_2^2

substituting value

     KE_f  =  \frac{1 }{2}  * ( 1.50 *10^{-3}) (v_2 )^2

     KE_f  =  7.50 *10^{ -4} (v_2 )^2

And  U_f is  the  potential  energy which is mathematically represented as

        U_f  =  \frac{k *  q_1 *  q_2  }{d }

substituting values

       U_f  =  \frac{9*10^9 *  2*10^{-6} * 8*10^{-6}  }{0.4 }

      U_f  =  0.36 \  J

From the law of energy conservation

     Q =  Q_f

So

    0.48 =  0.36 +(7.50 *10^{-4} v_2^2)

   v_2  =  4 \sqrt{10} \  m/s

     

   

6 0
3 years ago
Other questions:
  • How is energy distributed in the ocean?
    9·1 answer
  • Two ropes are attached to a tree, and forces of F⃗ 1=2.0iˆ+4.0jˆN and F⃗ 2=3.0iˆ+6.0jˆN are applied. The forces are coplanar (in
    10·1 answer
  • Bowling ball and a balloon are dropped from a 50 m tall building at the same time. IN AIR which object will hit the ground firs
    11·1 answer
  • A 25.0 kg bag of peat moss sits in the back of a flatbed truck, driving up a hill. The bag experiences a 225N normal force. The
    14·1 answer
  • The wooden block is removed from the water bath and placed in an unknown liquid. In this liquid, only one-third of the wooden bl
    9·1 answer
  • The mass of your new motorcycle is 250kg. What is the weight on the moon in newtons
    12·1 answer
  • A solid uniform cylinder is rolling without slipping. What fraction of its kinetic energy is rotational?
    10·1 answer
  • I also need the direction Thank you!
    8·1 answer
  • Calculate the acceleration of a turtle going from 0.3 m/s to 0.7 m/s in 30 seconds.
    11·1 answer
  • Hello, I am so confused about this problem, could you help ?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!