Answer:
Final Speed of Dwayne 'The Rock' Johnson = 15.812 m/s
Explanation:
Let's start out with finding the force acting downwards because of the mass of 'The Rock':
Dwayne 'The Rock' Johnson: 118kg x 9.81m/s = 1157.58 N
Now the problem also states that the kinetic friction of the desk in this problem is 370 N
Since the pulley is smooth, the weight of Dwayne Johnson being transferred fully, and pulls the desk with a force of 1157.58 N. The frictional force of the desk is resisting this motion by a force of 370 N. Subtracting both forces we get the resultant force on the desk to be: 1157.58 - 370 = 787.58 N
Now lets use F = ma to calculate for the acceleration of the desk:
787.58 = 63 x acceleration
acceleration = 12.501 m/s
Finally, we can use the motion equation:
here u = 0 m/s (since initial speed of the desk is 0)
a = 12.501 m/s
and s = 10 m
Solving this we get:
Since the desk and Mr. Dwayne Johnson are connected by a taught rope, they are travelling at the same speed. Thus, Dwayne also travels at 15.812 m/s when the desk reaches the window.
The answer is B.
Temperature is just another term for the average kinetic energy of a substance.
Integrating the velocity equation, we will see that the position equation is:
<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:
To get the position equation we just need to integrate the above equation:
Then:
Replacing that in our integral we get:
Where C is a constant of integration.
Now we remember that
Then we have:
To find the value of C, we use the fact that f(0) = 0.
C = -1 / 3
Then the position function is:
Integrating the velocity equation, we will see that the position equation is:
To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4
Answer:
a) v₁fin = 3.7059 m/s (→)
b) v₂fin = 1.0588 m/s (→)
Explanation:
a) Given
m₁ = 0.5 Kg
L = 70 cm = 0.7 m
v₁in = 0 m/s ⇒ Kin = 0 J
v₁fin = ?
h<em>in </em>= L = 0.7 m
h<em>fin </em>= 0 m ⇒ U<em>fin</em> = 0 J
The speed of the ball before the collision can be obtained as follows
Einitial = Efinal
⇒ Kin + Uin = Kfin + Ufin
⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0
⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))
⇒ v₁fin = 3.7059 m/s (→)
b) Given
m₁ = 0.5 Kg
m₂ = 3.0 Kg
v₁ = 3.7059 m/s (→)
v₂ = 0 m/s
v₂fin = ?
The speed of the block just after the collision can be obtained using the equation
v₂fin = 2*m₁*v₁ / (m₁ + m₂)
⇒ v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)
⇒ v₂fin = 1.0588 m/s (→)
Answer:
Yes, a force is require to set an object in motion.
Explanation:
- In space, even if you feel weightless, you are subject to motion. If you are orbiting the Earth, you are under the constant influence of Earth having a free-fall acceleration equal to the centripetal acceleration.
- To disturb this orbital motion, an external force is required.
- According to Newton's laws of motion, a force is required to change the state of the rest of a body or to change the velocity or direction if it is moving with uniform velocity along a straight line.
- Whenever there is a change in velocity or direction of a body there is a force acting on it.